Using IRMA for (small scale) digital elections

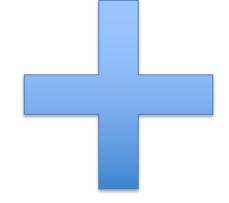
J.J.J. Doesburg

January 20th, 2020

Supervisor: prof. dr. B.P.F. Jacobs, dr. S. Ringers

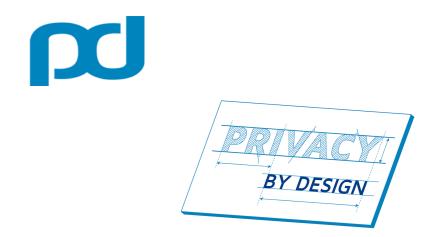
Amsterdam OpenStad + Amsterdam Digitale Stad

Citizen participation \bullet


> OpenStad makes digital tools for accessible participation, so that more people in Amsterdam can think along and decide on what is happening in the city.

- Relevant for our research: \bullet
 - **Digital elections**
 - Small scale, very local elections
- Current solution(s): sending voting codes per (paper) mail to houses, ulletvote via internet with email, etc...
 - Expensive, unreliable, inaccessible, no privacy by design

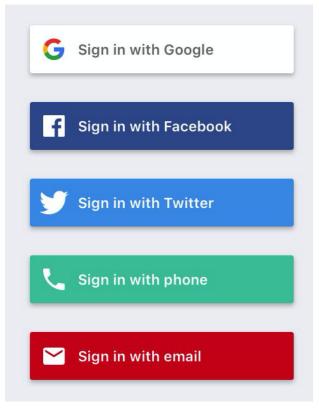
Een speelfontein i.p.v. het badje				
Het badje vervangen door een (speel)fontein, net als vroeger:				
 <u>Foto 1</u> <u>Foto 2</u> 				
Voor (22)	Anders	Tegen (3)		
BEVESTIG JOUW STEM MET E Vul hier jouw e-mail adres in	_	GA VERDER		

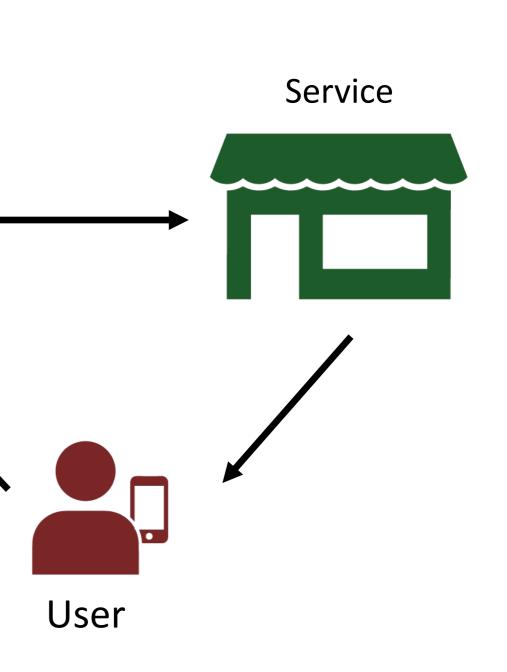


IRMA: an alternative to classic identity management

Attribute-based credential system (IBM Idemix) ullet

- Attributes: minimal pieces of information about a user lacksquare
 - Name, 18+, date of birth, email address, town, nationality
 - Not necessarily identifying
 - Electronically signed by some issuer
 - Users can selectively disclose their attributes and signatures, maintaining their privacy ullet




No IRMA

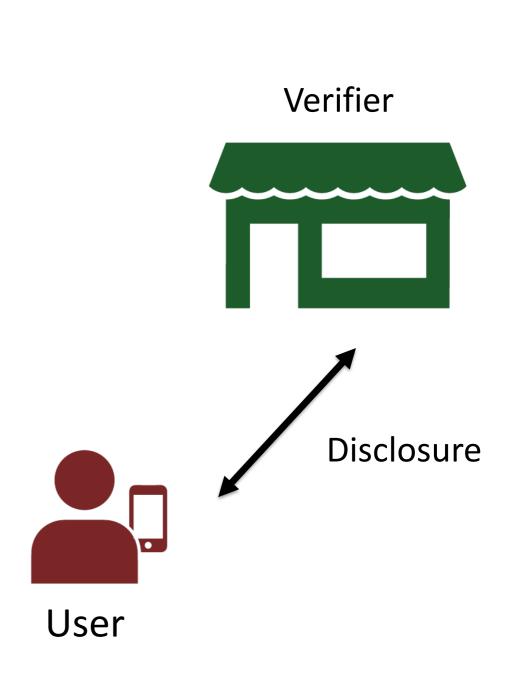
Identity provider

IRMA

Issuer

Issuance

Verifier



IRMA

Issuer



IRMA attribute-based signatures

- Include attributes in an electronic signature
- Privacy friendly signed statements
- Can be used to record votes \bullet
 - Signatures for integrity
 - IRMA for privacy

B. Hampiholi, G. Alpár, F. van den Broek & B. Jacobs (2015). Towards practical attribute-based signatures. In Proceedings of the 5th International Conference on Security, Privacy, and Applied Cryptography Engineering - Volume 9354, page 310–328. Springer-Verlag, 2015.

To what extent can IRMA be used in digital elections?

- So far, existing (cryptographic) schemes for electronic elections often turn out to be impractical and remained merely academic.¹
- No attempts to solve the 'e-voting' problem with attribute-based credential systems ullet

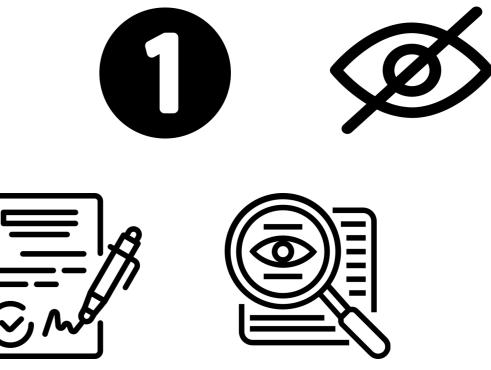
- IRMA could, as versatile ecosystem with many applications, be rather accessible \bullet
- Attribute-based signatures are a perfect fit for recording votes ullet

¹ K. Krips and J. Willemson. On practical aspects of coercion-resistant remote voting systems. In *Electronic Voting*, pages 216–232. Springer International Publishing, 2019.

Overview

- Introduction
 - Amsterdam OpenStad elections
 - IRMA
- **Requirements for elections** •
- Elections in IRMA ullet
- Limitations & details ullet
- Conclusion ullet

Requirements for elections


- Key features: ullet
 - Eligibility \bullet
 - Unicity •
 - Secrecy
 - Integrity •
 - Verifiability \bullet

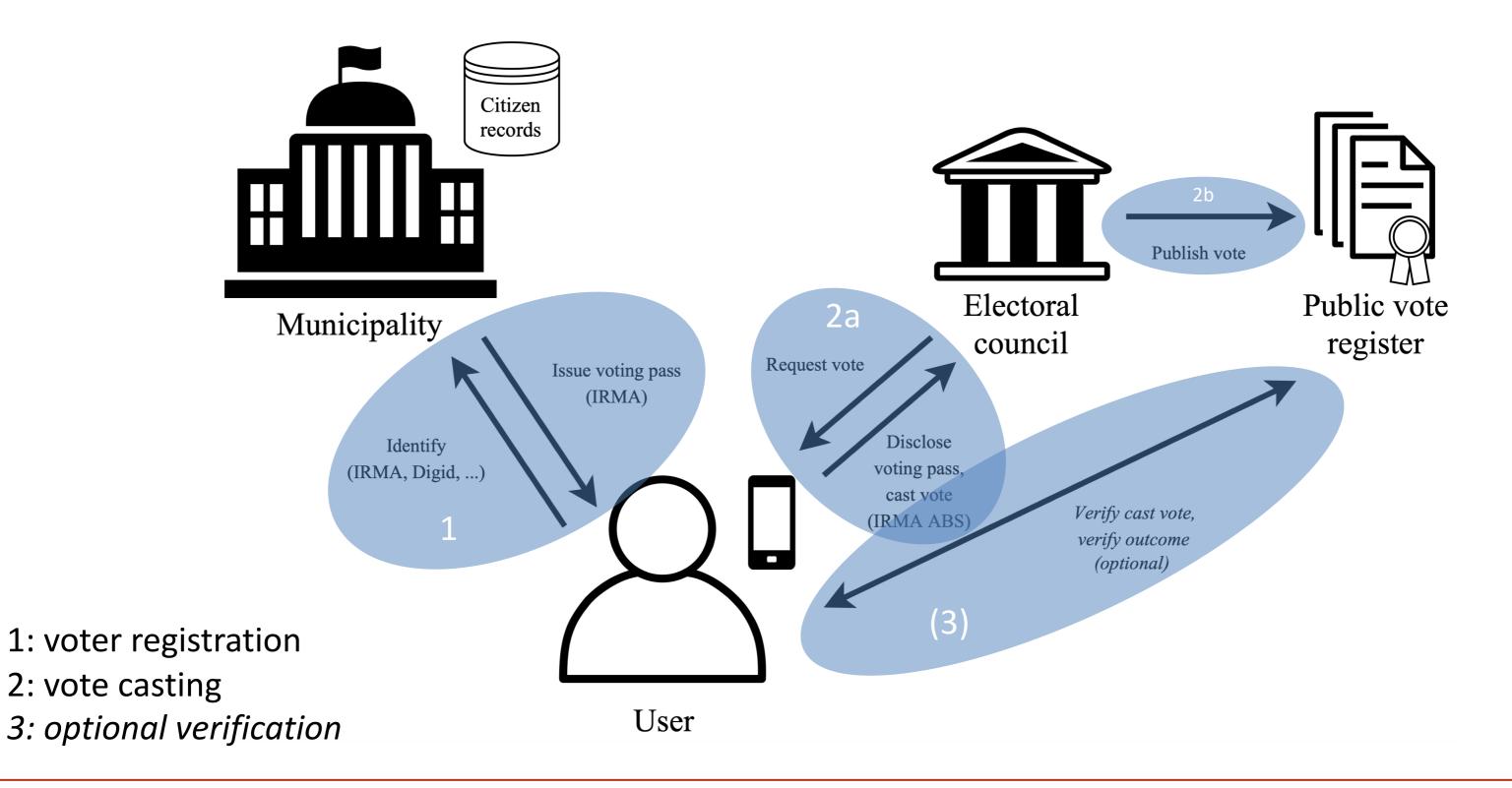
C

Additional features: transparency, liberty, accessibility ●

Adviescommissie inrichting verkiezingsproces. Stemmen met vertrouwen. Ministerie van Binnenlandse Zaken en Koninkrijksrelaties, 2007.

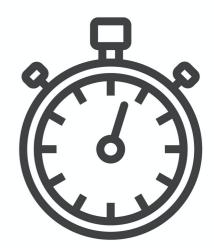
IRMA voting scheme: partial solution

- Intuitive approach
 - Attribute-based signature (ABS) on a voting statement
 - Eligibility-attribute included in the 'attribute-based vote'
 - Publish publicly for anyone to verify (not covered in this research)
 - Problem: unlinkability of IRMA enables people to vote multiple times, violating unicity lacksquare


IRMA voting scheme: blindly issued voting numbers

- We must include a voting number! \bullet
- But a voting number issued by the municipality, identifies a user and violates secrecy
- We need blindly issued credentials blind signatures on \bullet voting numbers
 - Municipality must sign the number, but...
 - ... municipality cannot know the number
- My thesis describes two small changes to scheme for \bullet IRMA issuance to enable this

Overview of the scheme



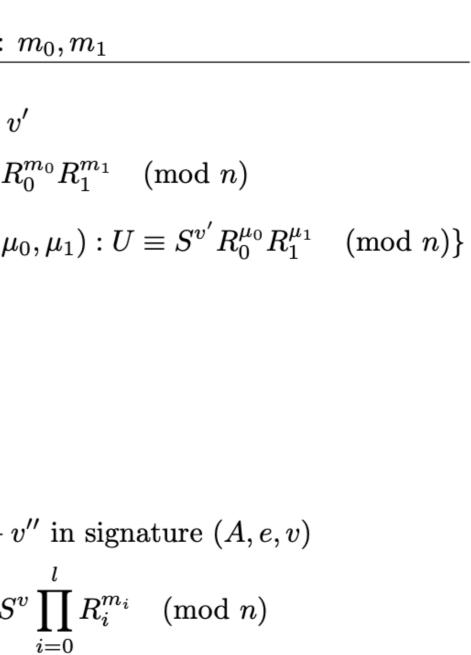
Limitations & details

- Voting phases do not really need to be fully separate
 - Voter registration can be done last-minute, but timing can violate anonymity •
- Proving what you voted makes you coercible ullet
 - Solve partially by allowing change/retraction of votes ullet
- Network-layer (IP addresses etc.) violates privacy
- Devices must be secure \bullet

Conclusion

- Blindly issued attributes are required to organize digital elections in IRMA \bullet
- Online remote elections have fundamental problems \bullet
 - Coercion, secure devices and networks, (D)DoS
- Not recommendable for large scale, high impact elections \bullet
- For small scale, low influence elections, we consider the ulletbenefits to outweigh these problems
- IRMA allows for rather simple/accessible online voting ٠
 - Ultimately verifiable
 - Privacy by design
- We have described a good way to start the development of proof of concept \bullet digital elections with IRMA

Extra: Overview of IRMA / Idemix issuance


IssuerUse
Secret:
$$p, q$$
Use
Sec
Random
 $U :=$
 U, PK Random v'' and prime e
 $A := ($\frac{Z}{US^{v''}\prod_{i=1}^{l}R_i^{m_i}})^{1/e} \pmod{n}$ W, PK Random v'' and prime e
 $A := ($\frac{Z}{US^{v''}\prod_{i=1}^{l}R_i^{m_i}})^{1/e} \pmod{n}$ $(A, e, v''), PK$ $PK\{(\delta) : A \equiv (\frac{Z}{US^{v''}\prod_{i=1}^{l}R_i^{m_i}})^{\delta} \pmod{n}\}$ $(A, e, v''), PK$ $v :=$
 $Z = 1$$$

\mathbf{r} ecret: m_0 dom v' $=S^{v'}R_0^{m_0} \pmod{n}$ $X\{(v',\mu_0): U\equiv S^{v'}R_0^{\mu_0} \pmod{n}\}$ v' + v'' in signature (A, e, v) $\equiv A^e S^v \prod^{\iota} R_i^{m_i} \pmod{n}$ i=0

Extra: Blind (double) signature on voting number

Issuer		User
Secret: p, q		Secret:
		Random v $U := S^{v'} R$
	$\overleftarrow{U, PK}$	$PK\{(v', \mu)$
Random v'' and prime e		
$A := (\frac{Z}{US^{v''} \prod_{i=2}^{l} R_i^{m_i}})^{1/e} \pmod{n}$		
$PK\{(\delta): A \equiv \left(\frac{Z}{US^{v''} \prod_{i=2}^{l} R_i^{m_i}}\right)^{\delta} \pmod{n}\}$	(A, e, v''), PK	
		v := v' + i
		$Z \equiv A^e S^e$

Extra: Blind generation of voting number during issuance

Issuer		\mathbf{User}
Secret: p, q		Secret:
		Random $U := S^{v'}$
	\downarrow U, PK	$PK\{(v', \cdot)\}$
Random v'', w'' and prime e		
$A := (\frac{Z}{US^{v''}T^{w''}\prod_{i=1}^{l}R_{i}^{m_{i}}})^{1/e} \pmod{n}$		
$\left PK\{(\delta) : A \equiv \left(\frac{Z}{US^{v^{\prime\prime}}T^{w^{\prime\prime}}\prod_{i=1}^{l}R_{i}^{m_{i}}} \right)^{\delta} \pmod{n} \right\} =$	$(A, e, v'', w''), PK \rightarrow$	
		v := v' +
		w:=w' -
		$Z \equiv^? A^e$

t: m_0

n
$$v'$$
 and w'
 $v'T^{w'}R_0^{m_0} \pmod{n}$
 $', w', \mu_0) : U \equiv S^{v'}T^{w'}R_0^{\mu_0} \pmod{n}$
 $+ v'' \text{ in signature } (A, e, v)$
 $' + w'' \text{ as special attribute}$
 $e^s S^v T^w \prod_{i=0}^l R_i^{m_i} \pmod{n}$

