
Research Internship Report

Radboud University SURF

Remote Document Encryption in
SURFfilesender

Author:
Job Doesburg
job.doesburg@{surf,ru}.nl
s4809327

Supervisors SURF:
William van Santen

william.vansanten@surf.nl

Nils Vogels
nils.vogels@surf.nl

Supervisors RU:
Bart Mennink

b.mennink@cs.ru.nl

Ileana Buhan
ileana.buhan@ru.nl

December 20, 2022

Abstract

In 2017, Verheul [2] proposed Remote Document Encryption (RDE) as a way to encrypt for
a user’s e-passport. In this report, we discuss the implementation of a prototype for RDE in
SURFfilesender, a file transfer service used by SURF based on the open source FileSender project.
Using RDE, senders can generate a secret key that only the e-passport can retrieve, and use this key
to encrypt files, without the need to share any secret data. Moreover, the sender can authenticate
the document holder based on the existing PKI for e-passports, verifying their identity based on
information in the document, without relying on a third party (like SURF). We will discuss the
prototype architecture and implementation, and the next steps that need to be taken to bring the
current prototype to a production-ready state. We conclude that RDE is a promising technology
that can be used to improve the security of file transfer services, but the proposed architecture
can also be used for other applications. Due to privacy concerns, however, at SURF, RDE can
only be used to its full potential with the latest model of Dutch passports or identity cards (issued
after August 2021), which are not yet widely available.

Contents

1 Introduction 3
1.1 About SURF . 3

1.1.1 Current end-to-end encryption in the FileSender project 3
1.1.2 Problems with the current end-to-end encryption 4

1.2 Remote Document Encryption . 4
1.2.1 RDE scheme in short . 4
1.2.2 Authenticating the e-passport holder . 5

1.3 SURFfilesender with RDE . 5
1.3.1 Alterations to the original secure filesender proposal 5
1.3.2 Benefits of the proposed solution . 6

2 Basic RDE Scheme 8
2.1 E-passports . 8

2.1.1 Secure messaging (BAC and PACE) . 9
2.1.2 Passive Authentication (PA) . 9
2.1.3 Chip Authentication (CA) . 10
2.1.4 Terminal Authentication (TA) . 10

2.2 RDE basic idea . 10
2.2.1 Trusting the reader . 11

2.3 ICAO compatibility . 12
2.4 Security . 13

3 RDE with document holder authentication 14
3.1 RDE without document holder authentication . 14
3.2 Adding document holder authentication . 14
3.3 Privacy considerations . 15

3.3.1 Privacy considerations for the MRZ data 16
3.4 Trust . 16
3.5 Key expiration and rollover . 17

4 RDE prototype infrastructure 18
4.1 Overview . 18

4.1.1 Notes on our implementation . 18
4.2 Core components . 19

4.2.1 Data classes . 21
4.2.2 Enrollment . 22
4.2.3 Key generation . 22
4.2.4 Decryption (key retrieval) . 23
4.2.5 Cryptography implementations . 24

4.3 Infrastructure components . 24
4.3.1 Key server . 24

1

4.3.2 Proxy server . 25
4.3.3 Reader app . 26

4.4 FileSender integration . 27
4.4.1 File upload . 27
4.4.2 File download . 29
4.4.3 Notes on our implementation . 29

5 Going forward 30
5.1 Key server . 30
5.2 User interface and user experience . 30
5.3 OCR in the reader application . 30
5.4 iOS support . 31
5.5 Support for more document types (drivers licenses) 31
5.6 Encrypting for multiple keys . 31
5.7 Support for more ciphers . 31

6 Further research 32
6.1 Split-key architecture . 32
6.2 Biometric authentication . 32
6.3 Other readers . 33

Acknowledgements 33

References 34

A Glossary 36

2

Chapter 1

Introduction

Filesender applications, such as the popular WeTransfer1 or its self-hosted open source alternative
FileSender project,2 are a popular way to transfer large amounts of data, removing the file size
restrictions of regular email. Due to their popularity, filesender services are a privacy hotspot,
too. That is, large amounts of possibly privacy-sensitive data are uploaded to these services and
a possible security breach at such a service could give adversaries access to the data of numerous
users. To improve privacy, end-to-end encryption is required for services like these.

Implementing end-to-end encryption however comes with the problem of key management. With
symmetric encryption, key management can be problematic as keys need to be shared out-of-
band via a different secure channel. The confidentiality of the transfer then is transferred to the
confidentiality of this other channel. In practice with negligent users, this often results in keys
being shared unencrypted via email. Asymmetric encryption could solve this problem, but the
practicalities of properly running a dedicated public key infrastructure or alternative infrastructure
(like PGP Web of trust3) for this purpose, might be even more problematic.

1.1 About SURF

SURF is the Dutch organisation of collaborative educational institutions. SURF offers ICT services
to their members, among which some cloud services such as SURFfilesender, based on the open
source FileSender project. Via SURFfilesender, students and staff from these institutions can
share large files (up to 1TB) with each other. SURF has a high focus on security and privacy and
thus does not want to process large amounts of unencrypted data with their service.

1.1.1 Current end-to-end encryption in the FileSender project

Currently, the FileSender project does implement end-to-end encryption with symmetric encryp-
tion (via passwords and PBKDF2). When users choose to use this option, they are asked to
choose or generate a password. This password is then used to encrypt the files in browser, before
they are uploaded to the server. When the file upload is complete, the server returns a link that
can be shared with the recipient in order to download the files. The password is not sent to the
server, but is expected to be shared out-of-band with the recipient. When downloading the files,
the recipient is required to enter the password, which is then used to decrypt the files in browser
again.

1https://wetransfer.com
2https://filesender.org
3https://en.wikipedia.org/wiki/Web_of_trust

3

https://wetransfer.com
https://filesender.org
https://en.wikipedia.org/wiki/Web_of_trust

This way, though SURF does facilitate the transfer of data for their users, they do not have access
to the data itself. Also, in a way, this could be considered as a form of two-factor authentication,
as the files can only be retrieved with access to the download link (sent via email to the user’s
email box) and with knowledge of the password. This, in principle, makes the service suitable for
transferring privacy-sensitive data.

1.1.2 Problems with the current end-to-end encryption

The current end-to-end encryption scheme works well, as long as the password has sufficient
entropy and is shared securely with the recipient via a different secure channel. However, in
practice, SURF experiences this is often not the case. Users often share the password via the same
email that contains the download link, or they share it via a second email but to the same email
inbox. This is problematic for multiple reasons.

1. The password is sent to the same email inbox as the download link, which means that we
do not really have two-factor authentication for the download.

2. The password is sent in plain text, which means that the password is not protected against
eavesdropping.

3. The recipient is made responsible for the secure handling of the password.

Considering these problems, though the current end-to-end encryption scheme works good in
theory, in practice it is not sufficient for SURF to be able to offer a service that is suitable for
transferring privacy-sensitive data. Given this situation, SURF is looking for a solution that allows
them to provide end-to-end encryption for their users, without the need for the users to share the
password out-of-band, guaranteeing this 2FA-like behaviour.

1.2 Remote Document Encryption

In 2017, Verheul proposed Remote Document Encryption (RDE) as a scheme for ‘encrypting data
for e-passport holders’ [2]. E-passports are passports that contain a chip implementing the ICAO
9303 standard [1]. We immediately note that although only passports implement this standard,
also other documents, like national ID cards and drivers licenses, implement significant parts of
this standard and can thus be used as well. In the rest of this report, we will use the term
e-passport, passport, or document interchangeably to refer to these documents, unless otherwise
specified. The RDE scheme is based on the idea that the e-passport can be used as a wireless HSM
(Hardware Security Module), generating symmetric keys (shared secrets with some other party)
that can be used for encryption. In this terminology, we consider recipients as the document
holders, and senders as the parties that want to send data to the recipients in an encrypted way.

1.2.1 RDE scheme in short

Recipients in this scheme first need to register their e-passport for usage with RDE at some
database. During enrollment, some data from the e-passport is extracted. These are called
enrollment parameters and one could consider them as the RDE public key of the e-passport
(though we will not use the word ‘public key’ as to avoid confusion later on). Senders can then,
based on this public key, generate a secret key that is shared between them and the e-passport,
together with so-called decryption parameters. The passport holder can use these decryption
parameters, together with their e-passport to retrieve the secret key. The decryption parameters
here do not need to stay secret, as they are only used to retrieve the shared secret from the
e-passport. A very simplified version of the RDE scheme is shown in Figure 1.1.

4

Figure 1.1: Simplified version of the RDE scheme.

1.2.2 Authenticating the e-passport holder

In its most basic form, the RDE scheme does not authenticate the e-passport holder. The passport
here just serves as an HSM (Hardware Security Module) that can output a key based on some
input. This already makes the scheme suitable for end-to-end encryption, as the sender and the
recipient can use the key to encrypt and decrypt the data without actually having to share the key
with each other. However, the RDE scheme can be extended to also authenticate the e-passport
holder using the government PKI (Public Key Infrastructure) that is used for e-passports.

In 2020, Verheul further described a secure filesender service based on RDE, where the e-passport
holder is authenticated using the existing PKI for e-passports [3]. During registration, additional
data is extracted from the e-passport, which is used to authenticate the e-passport holder. This
includes for example the name, nationality and date of birth of the e-passport holder, but could
also include other data, such as the facial image of the e-passport holder.

1.3 SURFfilesender with RDE

In this report, we describe how the SURFfilesender (or actually, the FileSender project) can be
extended with RDE to provide end-to-end encryption for their users, without the need for the users
to share the password out-of-band. We describe an infrastructure for using RDE in applications,
where we specifically focus on the SURFfilesender. The infrastructure, however, can be used for
other applications as well.

For this prototype, a number of components have been developed, which are described in the
following sections. Some components form the basis of the RDE scheme, while others are specific
to the SURFfilesender application. Especially the latter ones are not meant to be used in a
production environment, but are only meant to be used as a proof-of-concept to demonstrate the
feasibility of the proposed solution. Most notably, our prototype does not implement protection
against, for example, phishing attacks, denial of service attacks, or active MITM attacks on parts
of the protocol that do not involve RDE itself. We consider the challenge to implement such
protections to be very much feasible, but out of scope for this report.

A proof-of-concept walk-through of in-browser RDE is made available at https://demo.rde.

filesenderbeta.surf.nl. This website also contains links to all repositories that contain the
source code that is developed (see also https://github.com/SURFnet).

1.3.1 Alterations to the original secure filesender proposal

Verheul already described a secure filesender service based on RDE, where the e-passport holder
is authenticated using the existing PKI for e-passports [3]. Though the name suggests differently,

5

https://demo.rde.filesenderbeta.surf.nl
https://demo.rde.filesenderbeta.surf.nl
https://github.com/SURFnet

the term ‘filesender service’ in his paper does not refer to the actual FileSender project, but to a
generic filesender service. The focus of this paper is on the SURFfilesender specifically.

Though the general outline of the RDE scheme in our report is the same, the implementation we
describe in this report is notably different from the proposal in [3] and more closely follows the
original RDE scheme as described in [2].

The main reason for this is that the open source FileSender project already has end-to-end en-
cryption implemented, which we can use as a basis for our implementation. We thus only use the
key agreement part of the scheme, and use the existing end-to-end encryption implementation of
the FileSender project for the actual encryption of the files.

Moreover, we take a different approach to the authentication of the e-passport holder, because the
proposal by Verheul is not compatible with SURF’s way of operating. Our more naive approach
does not require any trust in SURF for authentication of users, and does not require SURF to
process any sensitive data that may not be revealed to others. This does come at the cost of less
privacy for the e-passport holders, but with recent developments with Dutch e-passports, this may
not be a problem anymore.

1.3.2 Benefits of the proposed solution

The proposed solution has a number of benefits over the current (password-based) end-to-end
encryption scheme of the FileSender project.

True end-to-end encryption

First of all, the proposed solution does not require the users to share a password out-of-band.
Instead, the encryption key is retrieved from the e-passport and never sent over a network (in
unencrypted form). Consequently, the proposed solution provides 2FA-like functionality for the
download of the file: the recipient of a file transfer needs to both know the download link (that is
unique and should only be sent to the recipient obviously) and be in possession of the e-passport
in order to retrieve the files.

’People already have an e-passport’

The aforementioned benefits, however, are not specific to the usage of RDE with e-passports. In
fact, the same benefits can be achieved by using any other HSM, such as a Yubikey, or even a
smartphone.

An additional advantage of using an e-passport is that they are already widely available (‘every-
body has one’4), and that they are already used for authentication purposes. For organisations
like SURF and its members, this means that there are no additional costs involved in the usage
of end-to-end encryption.

Another advantage is that, in contrast to using commercial HSM devices, users have an intrinsic
interest in keeping their passport secure. People are unlikely to share their passport with others or
leave it somewhere unattended, as this could lead to the passport being stolen or lost and possible
identity theft. We expect people to handle their passport more securely than any commercial HSM
device. Generally, at least in the Netherlands, people are more likely to always have their identity
documents with them, while commercial HSM devices or even phones might not be available at
all times.

4It is a huge misconception that everyone in the world has a passport or national identity card. Even within the
Netherlands, it is technically not mandatory to have one, only when you are somewhere in public space. Generally,
though, and especially in Europe, it is very common to own such a document.

6

Use existing governmental PKI

Moreover, using e-passports comes with the additional benefit that the e-passport holder can be
authenticated using the existing PKI for e-passports run by governments. Specifically for SURF,
this means that SURF does not need to be responsible for the authentication of the recipient. This
is done via the government. This is especially important as the recipients of the SURFfilesender
are not necessarily affiliated with SURF itself (but with its members). This means that SURF
cannot be making claims about their identity themselves, as it does not know them directly.

7

Chapter 2

Basic RDE Scheme

In this chapter we further explain the basic RDE scheme presented in [2].

We distinguish three phases in the RDE scheme: (1) enrollment, (2) key generation, and (3)
decryption (or key retrieval). In the enrollment phase, the user (recipient) enrolls their passport
for usage with RDE by extracting some data from the passport. This is done by using a reader
app that can communicate with the passport via NFC. Enrollment results in certain enrollment
parameters, which one could consider as some sort of RDE public key of the user. We will however
not use the term public key further, as this could be confusing with actual the public key of the
password that is included in the enrollment data. We rather use the term enrollment parameters.

In the key generation phase, someone (the sender) retrieves the enrollment parameters and gen-
erates an RDE key pair for the recipient. This results in a secret key, and decryption parameters.
The secret key can be used to do the actual encryption of the message or files. The decryption
parameters need to be sent back to the recipient, together with the encrypted message or files and
does not need to be kept secret. During decryption, the recipient uses the decryption parameters
together with their passport to retrieve the secret key and actually decrypt the message or files.

A high-level overview of this scheme is shown in Figure 2.1.

2.1 E-passports

E-passports are electronic passports that function as a smart card. They contain a chip that can
store data and execute programs. Data on e-passports is stored in files, called Elementary Files

Figure 2.1: High-level overview of the basic RDE scheme.

8

(EFs) containing certain Data Groups (DGs). For our report the most interesting files on the
passport for RDE are the DG1, DG2, DG14, and EFsod.

• DG1 contains the personal data of the holder of the passport. This group contains the
information that is also printed on the passport itself in the machine-readable zone (MRZ).
The data in this group is thus also referred to as the MRZ data.

• DG2 contains the facial image of the holder of the passport.

• DG14 contains security info of the passport. Most notably, it contains the Chip Authenti-
cation (CA) public key of the passport

• The EFsod contains the security object data of the passport. It contains a hash of all data
groups on the passport, as well as a certificate from the country that issued the passport.
The certificate can be used to verify the authenticity of the data.

2.1.1 Secure messaging (BAC and PACE)

Readers can communicate with an e-passport at different levels of security. The most basic level
is plain messaging and does not provide any security features. At this level, the passport will
not respond to any commands, except for querying the supported security levels and initiating a
secure messaging session. In order to actually communicate with the passport, a secure messaging
channel must be set up. Currently, there are two ways to set up a secure messaging channel: Basic
Access Control (BAC) and Password Authenticated Connection Establishment (PACE).

Basic Access Control (BAC)

BAC works via a challenge response mechanism, where the reader requests a random challenge
from the passport, and then shows knowledge of the BAC key by properly responding to this
challenge. The key is based on three fields from the MRZ: the date of birth, the date of expiry,
and the document number. After BAC, further communication with the passport is encrypted
using the 3DES algorithm.

Password Authenticated Connection Establishment (PACE)

A second and more modern way for this first level of security is Password Authenticated Connection
Establishment (PACE). PACE first performs a (Elliptic Curve) Diffie-Hellman key exchange to
generate a session key, which is then used to encrypt the communication. Authentication is then
still done with the BAC key derived from the MRZ data (or on certain passports, with the Card
Access Number (CAN), a six-digit number that is printed on the passport). According to the
ICAO standard, PACE is the preferred method for setting up a secure messaging channel as it
is more secure than BAC. BAC should only be used as fallback when PACE is not supported by
the passport [1]. Note that on the most recent Dutch passports, BAC is no longer supported and
PACE must be used for the first level of security.

BAC and PACE do not provide any real authentication of the document itself or the document
holder. They only prevent eavesdropping on the communication between the reader and the
passport and prevent skimming attacks (where an attacker reads data from the passport without
the user noticing, for example when walking through an airport). Using the BAC key (or CAN)
requires the reader of the passport to actually have physical access to the passport (or at least the
MRZ data).

2.1.2 Passive Authentication (PA)

After the first level of security has been established, the reader can read data from the document.
To authenticate whether this data actually belongs to a valid passport, the reader can perform
passive authentication. This requires the contents of the EFsod file to be read from the passport.

9

The reader can calculate the hashes of the data groups on the passport and compare them to
the hashes in the EFsod file. Additionally, it should verify the authenticity of the EFsod file by
checking a hash on those contents, and verifying the signature on the file. This signature is created
using the public key of the country that issued the passport, the so-called document signing key.
Finally, the certificate chain should be verified. This ultimately requires the reader to have a
trusted list of document signing keys. There are several ways to obtain such list, for example by
downloading it from the ICAO website, or from a country’s public key directory.

Note that the steps above are all be performed by the reader and do not require any processing
capabilities on the passport itself. This is why these steps are called passive authentication: the
passport does not actively participate in the authentication process.

2.1.3 Chip Authentication (CA)

The aforementioned passive authentication only verifies the authenticity of data on the passport,
but does not verify if the data is actually from the physical passport that is presented. We could
also be dealing with a fake passport that is replaying the data from a real passport. In order to
verify that the passport is actually the passport that is presented, the passport needs to actively
participate in an authentication protocol. This can be done via different protocols: by Active
Authentication (AA) or Chip Authentication (CA). For RDE, we use only use the latter.

Chip Authentication (CA) is a protocol that uses the CA public key of the passport to authenticate
the passport. This key is stored in the DG14 file on the passport. Upon perform CA, (Elliptic
Curve) Diffie-Hellman is performed between the passport and the reader. The shared secret of
this handshake is then used for further communication in the session. Note that this replaces the
keys that were set up earlier with BAC or PACE.

Note that with CA, the passport proofs it has access to the private key that belongs to the CA
public key (which in its turn is signed by the government via the EFsod). This is how we know
that we are communicating with the real passport and not a fake passport that is replaying.

Note that according to the ICAO standards, CA does not necessarily need to be ECDH, but can
also be RSA-based. However, in practice, ECDH is used more often. We will use the term ECDH
in the rest of this report, but note that RSA-based DH also works.

2.1.4 Terminal Authentication (TA)

For completeness, we also briefly mention Terminal Authentication (TA). With TA, the reader
proves to the passport that it is a trusted reader, via a challenge-response mechanism. This is
required for some applications. For example, in order to read certain biometric data from the
passport, like fingerprints, the reader must prove to the passport that it is a trusted reader. For
RDE, we do not use TA.

2.2 RDE basic idea

When performing the CA ECDH key exchange step, the passport will always use the same key
for its part of the handshake: it uses the public key that is stored in the DG14 file. After CA,
further communication is encrypted using keys deterministically derived from the shared secret
of the ECDH key exchange. This means that the freshness of the communication, relies on the
freshness of the ephemeral key chosen by the reader.

After CA, when the reader tries to read the data on the passport, the passport will respond with
a ciphertext that is encrypted using the keys derived from the shared secret. Because strong
encryption is used, the data will look random to anyone not in possession of this shared secret.
Everytime a reader chooses the same ephemeral key for its part in the ECDH key exchange, the

10

same shared secret will be generated, and reading this data group will result in the same ciphertext.
RDE is based on this idea.

1. Upon enrollment, we read the CA public key of the passport (after having performed BAC
or PACE). We also read the contents of one of the data groups on the passport. This can
be any data group that can be read without TA. In most cases, this will be DG14 as this
data group does not contain any privacy-sensitive data and is of sufficient size to return long
enough ciphertexts later.

2. During RDE key generation, we retrieve this information and choose our own ephemeral
key that is compatible with the CA public key of the passport. We simulate ECDH with
the CA public key of the passport (that is included in the enrollment parameters) and
compute the shared secret. We then use this shared secret and the derived keys to emulate
how the passport would reply to us when we would try to read the contents of the chosen
data group (from which we know the plaintext from the enrollment parameters). This
emulated ciphertext response will be used to construct the secret key. Furthermore, we
also need to emulate, using the shared secret and the derived keys, what our encrypted
read command should look like if we were to actually communicate with the passport. The
emulated encrypted read command (also referred to as protected command), together with
the public key we chose ourselves, together form the RDE decryption parameters.

3. When, as recipient, we want to retrieve the secret message key, we use the provided RDE
decryption parameters. First we perform BAC or PACE to set up the first level of security.
Then we perform the ECDH with the provided public key from decryption parameters (that
was chosen by the sender). Even though we, as recipient, do not know the shared secret
our passport is using (as we do not have the private key the sender generated), the passport
will know this shared secret (as it is based on the private key that is securely stored on the
passport). We then send the protected command to the passport. The passport will be able
to decrypt this command, and then reply with the encrypted contents of the chosen data
group. This will match the ciphertext response that was emulated by the sender. The reader
then derives the secret key from this ciphertext response.

For deriving the secret key from the ciphertext response, we simply take a hash of the ciphertext.

Note that only the sender and e-passport are able to generate this ciphertext, as only they are
able to construct the correct encryption keys. The e-passport can do this, because it possesses
the private CA key (securely stored in its chip) and knows the public key from the sender. The
sender can do this, because it possesses the sender private key that it generated themselves and
knows the public key from the passport. Any other party, however, does not possess any of the
private keys and is thus not able to perform the ECDH key agreement.

For further details on the RDE protocol, we refer to the explanation provided in [2]. A schematic
of the decryption process is shown in Figure 2.2.

2.2.1 Trusting the reader

We note that the reader itself does not store any secret information. It only interfaces with
the passport. During the decryption (key retrieval) process, however, the reader will receive the
secret key. More importantly, the ciphertext that is used to derive the secret key is sent ‘in the
clear’ from the passport to the reader. This means that not only the reader, but also anyone
eavesdropping the communication between the reader and the passport can read this ciphertext.
For normal communication with the passport, BAC (though weak) or PACE offers protection
against eavesdropping. After CA, however, this protection is replaced. For decryption, we thus
need to trust the reader and the environment in which the reader is used.

11

Figure 2.2: RDE decryption process

2.3 ICAO compatibility

The RDE protocol relies on e-passports being able to perform Chip Authentication (CA) according
to the ICAO standards [1]. There are different key exchange protocols and cipher algorithms that
can be used for CA.

The ICAO standard describes both standard RSA based Diffie-Hellman key agreement (DH) and
ECDH based Diffie-Hellman key agreement (ECDH) [1]. The standard also specifies that further
communication should be encrypted using 112 bit 3DES in CBC mode, or 128-bit AES in CBC
mode with CMAC, or 192-bit AES in CBC mode with CMAC or 256-bit AES in CBC mode with
CMAC. The standard does not restrict the use of specific curves for ECDH, meaning that any
curve can be used. However, it does specify a number of standard curves that can be used:

• brainpoolP192r1

• brainpoolP224r1

• brainpoolP256r1

• brainpoolP320r1

• brainpoolP384r1

• brainpoolP512r1

• secp192r1

• secp224r1

• secp256r1

• secp384r1

• secp521r1

12

Any e-passport that is compliant with the ICAO standard on this level should be able to perform
RDE.

As noted by Verheul in [2], also other national ID cards and electronic drivers licenses that imple-
ment the ICAO CA v1 standard should be able to perform RDE. German identity cards, however,
do not implement the ICAO CA v1 standard, but rather uses CA v2 that is not compatible with
RDE because no static key from the passport is used in the key exchange. Moreover, the German
identity card requires the use of TA before reading any data group.

2.4 Security

As described in [2], the security of RDE is based on the security of the underlying CA protocol
and the security of the encryption used for further communication. For the Brainpool320r1 curve
with 256-bit AES in CBC mode with CMAC, used on Dutch documents, RDE gives us 160-bit
security. Verheul does describe how longer ciphertexts can be achieved by not using a single
protected command, but by using multiple protected commands, reading more bytes from data
groups. In this report, we do not go into the details of this, nor did we implement this, as the 160
bit security is already sufficient for our use case.

13

Chapter 3

RDE with document holder
authentication

As mentioned earlier, the RDE scheme presented in [2] in its most basic form does not provide
any authentication of the document holder. In this chapter we will explain how to add document
holder authentication to the basic RDE scheme. This concept has already been presented in [3].
Our implementation, however, is different from the one presented in [3]. In this chapter, we will
first elaborate on our implementation and then explain the differences.

While the developed infrastructure will only be presented in the next chapter, we will already
use the concept of a key server in this chapter. The key server is a partially trusted party that
is responsible for storing the enrollment data of users (recipients). Senders can query the key
server for the enrollment data for a recipient, for example based on the recipient’s email address.
Because the email address is not contained in the e-passport, the key server needs to verify the
email address of the sender. As we will see, however, we do not need to further trust the key
server for other claims on the user’s identity, following our implementation.

3.1 RDE without document holder authentication

The RDE scheme described before does provide us with the ability to generate a shared secret key
between the sender and the receiver. However, as sender, you do not know if the receiver is the
actual document holder. Upon requesting the enrollment data for a receiver from the keyserver,
you do not have the ability to verify that this enrollment data actually belongs to the receiver,
other than trusting the key server. The user could be using the passport of another user, for
example, a passport that has expired or revoked by a government (possibly because it does not
offer sufficient security), or even use an especially crafted fake passport of which copies can exist.

This could give unfair security assumptions to the sender. In daily life, passports are primarily a
means of identification and authentication. Any sender might thus falsely assume that with using
RDE, the key server verified that the recipient is who they claim to be, while this is not the case.

3.2 Adding document holder authentication

Adding extra information about the document holder to the enrollment data turns out to be easy.
Upon enrollment, we should not only extract the contents of the data group we want to use for
RDE, but also the contents of the data group that contains the document holder’s personal data.
Most notably, this could be DG1, but it might also be interesting to include DG2, that includes
the document holder’s facial image. The enrollment data should then be extended to also contain

14

the contents of these data groups. Most importantly, we should include the contents of EFsod.
With this information, anyone can perform passive authentication, as mentioned in section 2.1.2
(checking hashes, signature, and certificate chain). This means that any party, including the key
server itself, can verify that the enrollment data belongs to the actual document holder at any
time. Because in RDE, Chip Authentication is performed, we also know that on decryption, the
document actively authenticates itself too.

This way, we do not only have the ability to generate a shared secret key between the sender and
the receiver, but we immediately verify the document holder’s identity via the governmental PKI.
Because the RDE data group is bound to this information, this essentially guarantees that only
the document holder (of anyone in possession of their document) can retrieve the secret key. Note
that we can also check if the document has expired or been revoked by the government, as we can
check the validity of the certificate chain.

Following this approach leads basically to 4 levels of overall RDE security:

1. Basic RDE: The sender and receiver can generate a shared secret, but the sender does not
have any guarantee on the integrity of the receiver’s document or identity. They could be
using a fake, expired, or insecure document or a document of another person. We fully trust
the key server to provide us with the correct enrollment data for the receiver.

2. RDE with EFsod: The sender and receiver can generate a shared secret, and the sender
can verify that the receiver uses a valid document. The document is not fake or expired and
is issued by a genuine government from our trusted certificates. We do still need to trust
the key server to provide us with the correct enrollment data for the receiver.

3. RDE with EFsod and MRZ data: Additionally, the sender can verify the recipient’s
identity using the identity information from DG1 We do not need to trust the key server
anymore. If the key server provides us with the wrong enrollment data, we can verify the
identity of the document holder ourselves using the government PKI.

4. RDE with EFsod, MRZ data and facial image: We can additionally verify the iden-
tity of the document holder using the facial image from DG2. This gives us additional
confirmation that the recipient is the person we expect them to be if we know their face.

There is also a fifth option available, which is to only use the facial image from DG2 for authenti-
cation and not include the MRZ data. This can be an interesting option for when we do not want
to disclose the identity information of the document holder, but do not care about disclosing the
document holder’s face.

Note that EFsod must always be included if we want to include other data groups, since it contains
the data that is required to verify the authenticity of the other data groups.

3.3 Privacy considerations

It is important to note that if we choose for document holder authentication, the enrollment data
contains a lot of information about the document holder.

Basic RDE The enrollment data contains the contents of the data group that is going to be used
for RDE. In most cases, this is DG14, which is also the most privacy-friendly data group to use.
This data group contains the public key of the document holder. This is not necessarily sensitive
information in itself, but the choice of the public key domain parameters could potentially still
reveal the nation that issued the document and the age and type of document (e-passport, eID,
etc.).

15

EFsod The enrollment data, additionally, contains the certificate chain and signatures. This
will always disclose the nation that issued (signed) the document, and will disclose the issuing and
expiry date of the document (as these will be included in the certificate chain).

MRZ data If the MRZ data is included, the enrollment data will also contain the full names of
the document holder, their date of birth, sex, nationality, the document number document type
and date of expiry. Also, some countries include the document holder’s personal number in the
MRZ data. In certain countries, this latter fact is a problem, as the personal number is considered
sensitive information that may not be disclosed. This problem will be discussed later.

Facial image If the facial image is included, the enrollment data will also contain the facial
image of the document holder. This will also include some metadata that might indirectly reveal
information about the document holder (e.g. the nation that issued the document, the date of
issuance).

3.3.1 Privacy considerations for the MRZ data

We have already mentioned that the MRZ data can sometimes contain the document holder’s
personal number (social security number / BSN). For Dutch citizens, this is a problem, as the
personal number is considered sensitive information that, by law, may not be processed by many
parties. This fact makes it impossible to use this data for RDE.

Since 2021, however, the Dutch government has released a new model identity card and passport
that no longer contains the personal number (social security number / BSN) in the MRZ data.
However, the old passports and identity cards are still in circulation and will be until 2031 (when
the old passports expire). This means that we cannot use the MRZ data for document holder
authentication for Dutch citizens with an old passport or identity card. As a key server, we should
even reject enrollment data that contains the MRZ data for Dutch citizens with an old passport
or identity card and make sure the reader application will not send this data to the key server in
the first place.

We did not investigate if this is also a problem for other countries.

3.4 Trust

Verheul has presented an alternative infrastructure for document holder authentication for RDE
in [3]. In his paper, he also mentions the problem with the MRZ data for Dutch citizens, and he
proposes a solution for this problem that also generally gives users more control over their privacy.

In his solution, the MRZ data is only disclosed to the key server upon registration. After that,
the key server will create its own certificate claiming that they verified the full enrollment data.
The key server will then only disclose the parts of the enrollment data that the user has allowed,
together with this own certificate.

Though this approach seems to solve the problem, it does not work for our use case.

For one, Verheul’s proposal still requires the key server to have access to the full MRZ data. In
case of SURF, SURF is never allowed to receive the MRZ data at all if it contains the personal
number (social security number / BSN) of a Dutch citizen. Receiving it and deleting it later is
not an option.

This problem could be resolved by creating a certified reader app for enrollment that does the
passive authentication on-device, and only send parts (so not the personal number) of the MRZ
data to SURF, accompanied by a certificate from the app. In theory, this is possible, but it
introduces a lot of complexity.

16

Moreover, this approach would place extra trust in SURF running the required PKI for the certified
apps. As sender, we do not have the benefit of relying on the government PKI, which we consider
to be one of the main benefits of using RDE. We therefore choose not to implement this approach.

3.5 Key expiration and rollover

In the basic RDE scheme, the e-passport essentially behaves as a simple HSM that ‘contains’ secret
keys. Decryption simply consists of extracting the secret key from the e-passport. E-passports,
however, have a limited lifetime.

The CA certificate has a validity of 10 years and the document itself also has a certain expiration
date (usually 10 years as well, but this can be shorter1). The basic RDE scheme does not take
this into account: after expiration, the e-passport will still be able to retrieve a secret key based
on decryption parameters and nothing withholds a user from generating a key for an expired
e-passport.

Yet, this is something we should take into account as application using RDE. Not only should
we not trust document holder authentication for expired e-passports, it might also be the case
that the document holder does not have access to their e-passport anymore. In The Netherlands,
for example, upon requesting a new passport, the municipality will destroy the old passport (by
cutting holes through the document). It could thus be the case that as sender, you encrypt for a
passport that no longer ‘exists’, or expires between the time of encryption and decryption. These
considerations might have consequences for the application implementing RDE.

1An interesting remark is that the validity of the signature on the passport does not necessarily match the
issuance and expiry dates from the MRZ data. Sometimes, the signature is valid for a (slightly) longer period than
the validity of the passport itself. Most notably, this holds for Dutch passports for minors. For them, the passport
is only valid for 5 years, but the signature is valid for 10 years (like for adults). We suspect that this is done for
the convenience of the manufacturer of the passports.

17

Chapter 4

RDE prototype infrastructure

In this chapter we will explain the infrastructure that we have developed for the FileSender RDE
prototype. We also refer to the technical documentation in the repositories of the components for
more information on the individual parts.

4.1 Overview

The infrastructure for RDE consists of the following components:

• A FileSender instance, which is the regular filesender application server that is hosted by
SURF and receives the encrypted files and allows recipients to download them.

• An RDE key server that is responsible for collecting enrollment data for users, verifying
their email addresses and making them available for querying by senders.

• An RDE client application that is able to interact with a user’s passport via NFC during
enrollment and decryption (key retrieval).

• The RDE browser client of the sender, which will run in the browser of the sender and will be
used to generate the RDE keys (the secret key and decryption parameters). This component
will be included in the FileSender web application, but will run in the browser and not on
the server.

• The RDE browser client of the recipient, which will run in the browser of the recipient
and will be used to receive the retrieved key from the RDE client app and decrypt the file.
This component will also be included in the FileSender web application, but will run in the
browser and not on the server.

• A simple proxy server that will enable communication between the RDE client app and the
RDE browser client of the recipient.

We first describe a general infrastructure for RDE in arbitrary applications. Then we describe
the integration in FileSender in particular. We also give some considerations specific to the
SURFfilesender application.

The general infrastructure is presented in Figure 4.1.

4.1.1 Notes on our implementation

For the prototype, we have implemented components that can be grouped into 3 categories:

18

Figure 4.1: Overview of the RDE prototype infrastructure. A more detailed figure for each phase
of RDE is included in Figure 4.2.

First, there are the core RDE components that enable the enrollment, key generation and decryp-
tion (key retrieval) steps of the basic RDE scheme. These consist of a Java library written in
Kotlin for the interaction with the e-passport, and a TypeScript library for the key generation and
passport emulation. The latter is written in TypeScript, as it is intended to be used in a browser
environment by the end user. Their implementation is also independent of the actual application
in FileSender, and can be used for other applications or infrastructures for RDE as well.

Second, there is a category of infrastructure components that are needed to make the RDE proto-
type work. These are the RDE key server that stores enrollment data, the client app that enables
enrollment en decryption and that uses the aforementioned library, and a simple proxy server that
allows communication between the client app and the browser client of the recipient. These com-
ponents are minimal implementations that are sufficient for the prototype, but are not intended
to be used in production in their current form, as they are not secure and do not have all the
features that would be needed for a production system. These components are still independent
to the FileSender application, and can be used for other applications as well that use the same
infrastructure.

Finally, there is the integration of RDE in the FileSender application itself. Here, minimal changes
have been made to the FileSender application to enable the RDE functionality.

4.2 Core components

The core components of the RDE prototype are the Java library (written in Kotlin) and JavaScript
library (written in TypeScript) for key generation that provide the cryptographic functionality
for the RDE scheme. This includes the interaction with the e-passport for enrollment, the key
generation and the decryption (key retrieval) steps. The Java library basically forms a wrapper
around the JMRTD library1 for interaction with an e-passport and uses the BouncyCastle library2

for the cryptographic operations. The JavaScript library is intended to be used in a browser
environment by the end user and does not implement any steps that require interaction with the
passport. In the future, however, it could be interesting to implement this in the browser as well,
as this would allow for a more seamless user experience. This would require hardware support for

1https://jmrtd.org
2https://www.bouncycastle.org

19

https://jmrtd.org
https://www.bouncycastle.org

(a) Enrollment

(b) Key generation

(c) Decryption

Figure 4.2: Interaction in the RDE prototype infrastructure in different phases.

20

NFC in the browser.

4.2.1 Data classes

There are several data classes that are used to store data / messages within the RDE protocol.
For our prototype, we have chosen for simple JSON objects, as they are easy to work with and
can be easily converted to and from byte arrays.

RDEEnrollmentParameters

The RDEEnrollmentParameters class is used to store the enrollment parameters for an e-passport.
This class includes the following fields:

• documentName: a user-chosen name for the e-passport (mnemonic name), which is used to
identify the e-passport towards the user (for example “My passport (******ABC)”, showing
the last 3 digits of the 9-digit document number).

• rdeDGId: the data group ID of the data group to read for RDE (usually 14).

• rdeDGLength: the number of bytes to read for RDE (usually 223, the maximum plaintext
size for which the ciphertext fits in a single APDU).

• rdeDGContent: the plaintext contents of the data group to read for RDE (usually the first 223
bytes of the data group, or the full data group if we do include the EFsod in the enrollment
parameters), as a hexadecimal string.

• caOID: the OID of the CA protocol supported by the e-passport.

• piccPublicKey: the public key of the CA protocol supported by the e-passport, as a hexadec-
imal string ASN.1 X9.62 TLV (Tag-Length-Value)-encoded public key (according to ICAO
specification, X9.42 for RSA based DH and TR-03111 for ECDH [1]).

• securityData: the contents of EFsod, as a hexadecimal string, or null if the EFsod is not
included in the enrollment parameters.

• mrzData: the contents of DG1, as a hexadecimal string, or null if the MRZ is not included
in the enrollment parameters.

• facialImageData: the contents of DG2, as a hexadecimal string, or null if no facial image is
included in the enrollment parameters.

RDEKey

The RDEKey class is used to store a generated RDE key, as generated by a sender. It consists of
the secret key (byte array) that can be used to encrypt an decrypt messages, and the decryption
parameters that can be made public and that are used together with the e-passport to retrieve
the secret key.

RDEDecryptionParameters

The RDEDecryptionParameters class is used to store the decryption parameters that are used
to retrieve the secret key. It consists of the ephemeral public key chosen by the sender and
the protected command that should be sent to the e-passport to retrieve the secret key. The
public key is a X.509 hexadecimal encoded ASN.1 DER string according to ICAO specification
(X9.42 for RSA-based DH and TR-03111 for ECDH [1]), and the protected command is encoded
as a hexadecimal string. Additionally, the OID3 of the CA algorithm is stored, as having this
information saves us a step in the decryption process.

3Object identifier, a globally standardized identifier for, among others, cipher suites.

21

4.2.2 Enrollment

Enrollment is only included in the Java library, as it requires interaction with the e-passport. Note
that the library offers several parameters for enrollment, for example the rdeDGId and rdeRBLength.
In practice, especially those parameters should be set by the party that makes RDE available for
one of their services, as those parameters highly influence the privacy and cryptographic strength
of the scheme. Other parameters, like withMRZData could also be set, but could also be defined
by the end-user.

During enrollment, first, the security info is read from the e-passport in order to determine if the
e-passport supports PACE or if we should fallback to BAC for our first level of secure messaging.
If PACE is supported, we use PACE to authenticate to the e-passport, otherwise we use BAC.

After authentication, we read the data group that is chosen to be used for RDE. Usually, you want
this to be data group 14, as this group is usually of sufficient size and does not contain privacy
sensitive data, but other data groups that can be read without Terminal Authentication are also
supported. If enrollment with MRZ data is chosen, we also read data group 1, which contains
the MRZ data. If enrollment with facial image data is chosen, we also read data group 2, which
contains the facial image data. Finally, we also read the EFsod, which contains the security data
of the e-passport.

Then, we perform passive authentication with the information from the EFsod. Note that in the
current implementation, we do not check the certificate chain of the EFsod, as this is not necessary
for the prototype and would require us to include a certificate store with trusted certificates. In
the future, this should be added to the implementation.

For enrollment, apart from the data group to use for RDE, users can also choose the number
of bytes to read from that data group, n or rdeDGLength. This usually is 223, as this is the
maximum plaintext size for which the ciphertext fits in a single APDU, but can also be less if the
user agrees with weaker security. Note that the data group must be large enough to actually read
the number of bytes chosen by the user. Especially data group 1 is too small to read 223 bytes,
so we recommend using data group 14 for enrollment.

If enrollment with security data is chosen, we include the EFsod in the enrollment parameters,
together with the full contents of the RDE data group. If enrollment with MRZ data is chosen,
we also include the MRZ data in the enrollment parameters, and similarly for facial image data.
If no security data is included, we only include the first n bytes of the RDE data group, as this
is the maximum plaintext size for which the ciphertext fits in a single APDU and we thus do not
need more data. If we do include security data, we must include the full RDE data group, as the
hash of the RDE data group otherwise will not verify with the EFsod.

We also include the OID of the CA protocol supported by the document, as this is needed to
determine the public key format, cipher algorithms and key length during key generation.

Finally, the enrollment parameters include a document name, which functions as a mnemonic name
to identify the document towards the user (in case the user has multiple documents enrolled).

4.2.3 Key generation

Key generation is included in the JavaScript library, as it does not require interaction with the
passport and is expected to run in the browser of a sender. For completeness, however, we
also include key generation in the Java (Kotlin) library, as it is useful for testing purposes and
could potentially be useful for other applications when a server wants to encrypt messages for
a user. However, verification of the enrollment parameters is not yet implemented in the Java
(Kotlin) library. Only the TypeScript library currently implements verification of the enrollment
parameters.

The key generation takes the enrollment parameters as input, and generates a secret key and

22

decryption parameters. This is done by first generating a ephemeral key pair for the offline CA
(EC)DH key agreement, compatible with the CA protocol supported by the e-passport. We then
compute the shared secret using the ephemeral private key and the public key of the e-passport.
From the shared secret, we derive the KMAC and KENC keys according to the ICAO specification
for the supported CA protocol.

The most significant step is then to emulate the e-passport response to a READ BINARY command
for the RDE data group, using KENC to encrypt the data group and KMAC to compute the MAC.
This results in the emulated ciphertext, which is then used to generate the secret message key
by simply taking the SHA-256 hash of the ciphertext. We also generate the encrypted READ
BINARY command with KENC and KMAC and store this, together with the ephemeral public
key, in the decryption parameters.

The main difference between the key generation in the JavaScript (TypeScript) and Java (Kotlin)
library is that the Java library uses the BouncyCastle library for all cryptographic operations
and implementations from JMRTD, while for the JavaScript library these are not available. The
JavaScript library also cannot use the WebCrypto API for these steeps, as it does not support all
algorithms and curves that are used in the ICAO specifications. We therefore use custom crypto
libraries for emulating the passport response and generating the protected command. For more
details, we refer to our source code.

Verification of enrollment parameters

Before generating the secret key, we can verify the enrollment parameters to authenticate the
document holder as described in Chapter 3. This, naturally, is only possible if the enrollment
parameters include security data.

First, the hashes on the chosen RDE data group, and optionally the MRZ data and facial image
data, are verified against the hashes in the EFsod. Then, the hash on the full EFsod is verified,
followed by the signature on this data. Finally, the certificate chain of the EF.SOD is verified
against a trusted certificate store.

Any user can choose their own trusted certificates. This means that a user can determine them-
selves which certificates from which issuing states they trust. For the prototype, we use 13 cer-
tificates from the Dutch government Country Signing Certificate Authority (CSCA)4. Parsing a
‘Masterlist file’ that contains a list of certificates from multiple CSCAs not yet implemented. Cer-
tificates need to be provided individually in PEM format. Also CRL’s (Certificate Revocation
Lists) are not yet implemented.

4.2.4 Decryption (key retrieval)

Decryption is only included in the Java library, as it requires interaction with the e-passport.
During decryption, similar to enrollment, first, the security data of the e-passport is read from
the e-passport and either PACE or BAC is used to authenticate to the e-passport. Then, we
perform Chip Authentication with the ephemeral public key from the decryption parameters. The
e-passport will now further communicate with the reader using the shared secret with the sender
who created the decryption parameters. We then send the protected command from the decryption
parameters to the e-passport, which results in ciphertext contents of the RDE data group.

We derive the secret message key from the ciphertext by simply taking the SHA-256 hash of the
ciphertext.

We reiterate that the ciphertext that forms the basis for the secret key, is sent in the clear from
the e-passport to the reader (that computes the SHA-256 hash).

4https://www.npkd.nl

23

https://www.npkd.nl

4.2.5 Cryptography implementations

As mentioned earlier, cryptographic operations in the Kotlin library use JMRTD and BouncyCas-
tle. This is the obvious choice, as JMRTD is a solid library that implements communication with
e-passports, and already uses BouncyCastle.

For the JavaScript libraries, the preferred solution would be to use the WebCrypto API, as it is the
most secure and most efficient implementation. The WebCrypto API, however, does not support
all cryptographic operations that are required for emulating a passport, such as AES-CMAC or
elliptic curve cryptography with brainpool curves. That is why we have chose to use the following
cryptographic libraries for emulating e-passport commands and responses:

• @peculiar/x509

• indutny/elliptic (for ECC on arbitrary curves)

• indutny/hash.js

• rosek86/aes-cmac (for AES-CMAC)

• leonardodino/aes-ts (for AES-CBC and AES-ECB with no padding)

4.3 Infrastructure components

The infrastructure components of the RDE prototype are the key server, the proxy server and
the reader app. They function as a minimal implementation of the RDE prototype and work
independently of the FileSender application (or any other application for that matter).

4.3.1 Key server

The key server in its most simple form is a simple REST API that stores the enrollment data
and allows users to query it. Our implementation is written in Python and uses the Django web
framework. Users can register and log in to the key server using SURFconext, which is a federated
identity provider. Via SURFconext, the key server receives the user’s email address which will be
used to link the enrollment data to. Users can then use the reader app to enroll their e-passport
and push the enrollment data to the key server.

Querying the key server

The key server provides a REST API for querying the enrollment data based on the user’s email
address. The key server will then return the enrollment data for the user, if it exists.

It is important to note that by storing all enrollment data on the key server, this key server contains
a lot of privacy sensitive information. If users choose to use document holder authentication during
enrollment, the key server might contain the MRZ data and facial image data of the user. We
should thus be careful with making the key server available to the public. Probably, we should
only allow certain authenticated users to query the key server. This is not implemented in the
prototype and is topic for further discussion.

Key server security

There are a number of security assumptions that we make about the key server.

• For senders, we do trust the key server to return the correct enrollment data for a user’s
email address.

• For senders, we do not need trust the key server to not modify the enrollment data if the data
includes document holder authentication. Senders can verify the enrollment data themselves.

24

• For recipients enrolling at the key server, we do trust the key server to handle the enrollment
data securely with respect to the user’s privacy.

In this sense, the security assumptions towards the RDE key server are similar to those of other
key servers, such as for PGP.

Notes on our implementation

The implementation of the key server for our prototype is very minimal. The API for querying
the key server is very simple and does not include any authentication for querying users or rate
limiting. The key server also does not verify the enrollment data upon receiving it. Finally, it
provides no way to delete enrollment data. The process of scanning a QR code for enrolling
e-passports is an easy implementation, but not very user friendly and not very secure. For a
production system, these features should be implemented.

SURFconext and eduID

One approach for implementing a production key server at SURF is to integrate it within eduID,
another service SURF offers. eduID can be considered as an universal identity service that contains
different attributes about a user. In contrast to regular SURFconext, where attributes are provided
by institutions, eduID attributes are stored by SURF itself. This means that eduID can be used
to store attributes that are not provided by institutions, such as the RDE enrollment parameters.

A user’s RDE ‘public key’ (enrollment parameters) could thus be stored as attributes in eduID.
This would, however, still require a key server to be implemented for querying the enrollment
parameters for users. It is thus questionable whether this would be a good approach for imple-
menting an RDE public key server at SURF, at least not necessarily for filesender applications,
where senders need to query for enrollment parameters of other users. Only in situations where
the sender is a server, encrypting information for the user itself, would this approach be useful.

4.3.2 Proxy server

In order to achieve true end-to-end encryption, the browser and the app need to be able to
communicate with each other. This is not easily possible, as we cannot assume that the browser
and the app are on the same network (even if they are, they can probably not communicate
directly). Therefore, we have created a proxy server that acts as a middleman between the
browser and the app. The sole purpose of this server is to relay messages between the browser
and the app. It is not involved in the actual encryption process, nor should it have any security
critical role. The proxy server is implemented in Python and uses the Flask web framework. The
proxy server simply allows websockets to be opened between the browser and the app and relays
messages between them.

Decryption handshake protocol

In order to facilitate end-to-end encryption between the browser and the app, we have created
a simple protocol for the decryption handshake. The protocol is very simple and consists of the
following steps:

1. The browser opens a websocket connection to the proxy server on a unique URL.

2. The browser presents a QR code to the user that contains the URL of the websocket con-
nection.

3. The user scans the QR code with the app.

4. The app opens a websocket connection to the proxy server on the same URL.

5. The app generates a ephemeral key pair and sends the public key to the browser.

25

6. The browser generates a ephemeral key pair and a random IV and sends those back to the
app.

7. Both parties perform a Diffie-Hellman key exchange using the ephemeral key pairs. Both
parties now have the same shared secret and can communicate with each other using this
shared secret.

8. The browser sends the decryption parameters to the app, encrypted with the shared secret
and the IV.

9. The app decrypts the decryption parameters and uses them to retrieve the secret key from
the passport.

10. The app sends the retrieved secret message key to the browser, encrypted with the shared
secret and the IV.

We use ECDH with the NIST P-384 curve for the Diffie-Hellman key exchange. For further
communication, we use AES-256-CBC with a 128-bit IV. Keys are encoded as JWKs.

We expect the connections with the proxy server to use TLS (WebSocket Secure) (and strongly
rely on this for security). This means that the proxy server will not be able to read the messages
sent between the browser and the app.

This protocol is implemented in a TypeScript library for decryption, and in the reader app.
Because this protocol, however, is not part of the RDE scheme itself, we do not discuss it in
depth.

Attacks on the proxy server

The proxy server is a potential point of failure in our prototype infrastructure. An active MITM
attacker could intercept the ECDH key exchange and this way be able to read the secret key that
is transferred from the reader app to the browser. This can easily be achieved by authenticating
the shared secret between the browser and the app by showing a message to the user that they
need to confirm on both devices, or by letting the app create a simple linking code that the user
needs to enter on the browser before proceeding. For the implementation in our prototype, we
have chosen to not implement such security measures, as this does not relate to the actual RDE
protocol and we consider it out of scope for this prototype. For production systems, however, we
should definitely consider implementing security measures against MITM attacks.

Phishing attacks are also a potential threat, as the user might be tricked into scanning a QR code
that is not generated by the browser. This also results in the user’s secret key being leaked to the
attacker. This can be solved, too, by showing a message to the user that they need to confirm on
both devices. We have not implemented this in our prototype either, as it is not part of the RDE
protocol.

Notes on our implementation

The implementation of the proxy server for our prototype is very minimal. It does not implement
any authentication or rate limiting, nor does the proxy server verify the messages sent between the
browser and the app actually follow the decryption handshake protocol. For a production system,
these features should be implemented, as well as security measures against MITM attacks.

4.3.3 Reader app

The reader app is a simple Android app that uses the Java (Kotlin) library to read the e-passport.
It can be installed on a mobile device and is used to read the e-passport and retrieve the decryption
key.

26

The reader app does not store any data itself. There is thus no reason for the reader app to be
installed on the user’s personal device. Any device that can interact with the e-passport can be
used.

At decryption, however, the reader app will receive the secret key and thus must be trusted with
this key. Additionally, the ciphertext that the secret key is formed from, is sent in the clear from
the e-passport to the reader app. This means that we do have strong trust requirements for the
reader app, the device it is installed on, and the environment in which it is used.

At enrollment, we do not have such strong trust requirements.

Notes on our implementation

The implementation of the reader app for our prototype is very minimal. Especially, the user
interface is very basic and does not provide any feedback to the user. For a production system,
this should be improved, not only for the user experience, but also to prevent phishing attacks.

4.4 FileSender integration

The RDE implementation in the Filesender application is a simple extension of the existing ap-
plication. We have tried to keep the changes to the application as minimal as possible, while still
allowing for the RDE functionality to be implemented.

It is important to note that we do not implement the filesender encryption scheme from [3]. In
his paper, in section 4, Verheul describes its own encryption scheme to encrypt the actual files
that are sent. The filesender project, however, already has its own file encryption scheme based
on PBKDF2 and AES-256. Therefore, we have chosen to use this existing encryption scheme, and
only implement the RDE key agreement steps on top of it. This means that the secret key that
results from RDE, is used as input for a PBKDF2 key derivation function, which is then used to
encrypt the files that are sent.

An overview of the RDE infrastructure integrated in the FileSender application is shown in Fig-
ure 4.3.

4.4.1 File upload

Upon uploading a file, the user is presented with the possibility to choose between the regular
FileSender encryption scheme and the RDE encryption scheme. If the user chooses the RDE
encryption scheme, the user is presented with a field to query a key server with a certain email
address. The browser queries the key server for the provided email address and retrieves the
enrollment parameters. The user is then presented this list with enrollment parameters that they
can choose from.

Verification of the enrollment parameters

After the user has chosen an enrollment parameter, the browser verifies the enrollment parameters.
When the enrollment parameters do not pass the verification, the user is presented with an error
message. Otherwise, a notification is shown to the user with the validated information. There are
several possibilities:

• The enrollment parameters could not be verified, because no security data was included.
The user can still proceed, but the document holder is not authenticated in any form. We
thus fully rely on the key server for the identity of the document holder.

• The enrollment parameters have been verified to be from a valid e-passport. The issuing
country and validity of the signature are shown to the user.

27

Figure 4.3: Overview of the RDE infrastructure integrated in the FileSender application.

• The enrollment parameters have been verified to be from a valid e-passport and the document
holder’s MRZ data is included. In this case, additionally, the MRZ data is shown to the
user.]

• Additionally, the facial image of the document holder is shown to the user.

In a production system, we probably want to verify the enrollment parameters before they are
shown to the user for selection. The FileSender application could also put extra restrictions on
what enrollment parameters are allowed to be used. Wwe could only accept verified enrollment
parameters, enrollment parameters with MRZ data, or only accept enrollment parameters that
are valid for a certain period of time. For example, it might be desirable to disallow senders to
select enrollment parameters that expire before the end of the file transfer availability period, as
to prevent the document holder from being unable to decrypt the file. These are all topics for
further consideration.

File encryption

After the user has chosen the RDE document to encrypt for and verified the enrollment param-
eters, the browser generates an RDE key. The decryption parameters are send to the FileSender
server and stored in its database. The secret key is used as the password for the PBKDF2 key
derivation function that is already implemented in the FileSender application (for password-based
encryption).

We note that the reason for choosing to use PBKDF2 here is only for the convenience of developing
this prototype. In fact, there is no reason to use PBKDF2 here, as the RDE secret key is already
a random key.

28

4.4.2 File download

When the recipient tries to download a file that is encrypted with RDE, they are presented with a
popup that asks them to scan a QR code with their reader app. This triggers the RDE decryption
handshake protocol as described in Section 4.3.2. This results in the retrieval of the secret key,
which was used to encrypt the files. This key is then again used in the PBKDF2 key derivation
function to finally decrypt the files.

Note that we only find out if the decryption was successful after the first blob of a file was
decrypted. If a user would try decryption with the wrong document, the key retrieval steps would
not necessarily fail, but result in a different secret key and thus only the decryption would fail.
We will, however, only find out after the first blob of a file was decrypted. This is also the current
behavior of the FileSender application for password-based file encryption.

4.4.3 Notes on our implementation

The implementation of the RDE integration in the FileSender application for our prototype is very
minimal. The current FileSender code base, especially with regards to the UI and browser encryp-
tion and decryption, is not very modular. This makes it difficult to integrate RDE in a clean way.
We know that the FileSender developers are working on a new version of the application, which
will feature a new UI and hopefully a more modular code base. We expect that the integration of
RDE in the new version of the FileSender application will be much easier and cleaner given the
modularity of the RDE components that we developed.

FileSender CLI

We also note that the FileSender application provides a CLI tool. We have not implemented RDE
for this CLI tool, as this has not been a priority for us.

The recipient

The current FileSender integration does not enforce that the download link of the transfer is only
shared with the email address that is associated with the enrollment parameters. For a production
system, this probably should be enforced for usability reasons.

User interface

In line with the rest of our prototype, the user interface of the RDE integration in the FileSender
application should be improved so users better understand what is going on and users do not make
unfair assumptions about the security of the system.

29

Chapter 5

Going forward

In this chapter, we will discuss the next steps that need to be taken to bring the current prototype
to a production-ready state, partially in addition to remarks that were made in the previous
chapters.

5.1 Key server

Most notably, a production-ready RDE key server needs to be developed, and possibly integrated
into existing applications. The whole enrollment process needs to be reworked to be more user-
friendly and more secure. We refer to the previous chapter for more details on this.

5.2 User interface and user experience

The current prototype is a proof-of-concept, and thus, the user interface is not very user-friendly.
Errors are not handled very well, and the user is not informed about what is going on. This needs
to be improved.

Specifically the term ‘Remote Document Encryption’ is not very user-friendly, and should be
replaced with something more descriptive, such as ‘Passport/ID-based encryption’. Terms like
‘security data’, ‘MRZ data‘ and ‘facial image’ should be replaced with better terms. Regarding
the MRZ data specifically, those terms should make clear to users the privacy implications of
sharing this data. Users should know that this data contains their full name, nationality, sex,
date of birth, and document number, and understand the implications of publishing this data. On
the other hand, they should also understand that reading this data does not make it possible to
commit identity theft.

5.3 OCR in the reader application

In order for the reader app to communicate with the e-passport, it needs to know the BAC key of
the document (or the CAN, if the document has a CAN). This BAC key is based on the document
number, date of birth and expiry date of the document. Currently, the reader application asks the
user to enter this data manually. This is not very user-friendly. Instead, the reader application
should be able to read this data from the printed MRZ on the document. This can be done using
optical character recognition (OCR). For privacy reasons, this OCR should be done locally on the
user’s device, and not on a remote server, as the MRZ data could contain the personal number of
the document holder (that SURF is not allowed to process).

30

5.4 iOS support

For the prototype, we have only developed a reader application for Android. However, the same
reader application should also be developed for iOS. This is not trivial, as a powerful library like
JMRTD is not available for iOS (in face, iOS just recently gave developers low level access to the
NFC chip). The AndyQ/NFCPassportReader1 library is available for iOS and seems to implement
all the functionality that we need.

5.5 Support for more document types (drivers licenses)

Currently, the prototype only supports e-passports and e-ID cards. In The Netherlands, however,
there are also e-driver’s licenses, and e-residence permits. It is almost certain that these documents
can be used for RDE as well (with minimal changes to the reader app), but this has not yet been
implemented.

5.6 Encrypting for multiple keys

The current implementation allows senders to choose to encrypt a transfer for a single e-passport.
There might, however, be applications where it is useful to encrypt for multiple e-passports. For
example, if a transfer should be available to multiple people, but perhaps more importantly, if
one person should be able to decrypt a transfer with either one of his documents (passport,
identity card, driver’s license). This could greatly improve usability. In order to achieve this,
the integration of RDE within the encryption scheme of FileSender should be changed. Instead
of using the secret key from RDE directly for encrypting the files (after PBKDF2), files instead
should be encrypted with a different key, and the RDE secret key should in its turn encrypt this
key. This way, multiple RDE keys can be generated, all to encrypt the file encryption key, so that
multiple documents can ultimately decrypt the same transferred files.

When such changes are made to the FileSender integration, it would also be beneficial to not use
PBKDF2 at all for RDE, as it is not required and does not truly offer additional security.

5.7 Support for more ciphers

Currently, the response emulation in RDE key generation step only supports ECDH for Chip
Authentication key agreement with AES based ciphers after the key agreement. This covers by
far the most commonly used passports. According to the ICAO specifications, however, there
are also passports that use RSA-based DH for key agreement, and DES based ciphers after the
key agreement [1]. A first step would thus be to investigate what countries actually use these
passports, and then decide whether those should be supported or not. One could also argue that
these passports are not very secure, and thus, we should not support them at all.

1https://github.com/AndyQ/NFCPassportReader

31

https://github.com/AndyQ/NFCPassportReader

Chapter 6

Further research

In this chapter, we will discuss the further research that can be done on the topic of application
of Remote Document Encryption. These are more fundamental research questions, in contrast to
the more implementation-related topics that were discussed in the previous chapter.

6.1 Split-key architecture

Currently, the decryption (key retrieval) step in RDE is based fully on the e-passport. The secret
key is retrieved fully from the e-passport. This has some consequences. In case a user loses his
e-passport, however, there is no way for them to revoke their passport. They surely could indicate
at a key server that their passport is lost (after authenticating with their email, for example),
hopefully preventing others from still using the passport’s enrollment parameters to encrypt for.
Already encrypted documents that are already out there, however, cannot be revoked.

A possible solution to this problem is to use a split-key architecture. In such an architecture, the
secret key would not only be based on the response of the e-passport, but also on a secret key that
is stored on a key server. For decryption, the key server would thus also need to be involved. To
revoke a document, the user would simply need to revoke the key on the key server, making any
future decryption attempts fail.

With such an infrastructure, also a PIN could be introduced that needs to be provided in order to
unlock the key server’s secret key part. Introduction of a PIN would give us even more security,
as it prevents stolen or lost passports from being used to retrieve the secret message key. Note
that this still does not bind the e-passport to a specific reader app. The reader app itself still does
not need to store any secret data itself.

6.2 Biometric authentication

A PIN would be a nice addition to the RDE scheme, but it is not the only way to improve the
security of the scheme. A PIN can still leak or be shared with others. An interesting alternative
is to use biometric authentication.

Currently, SURF’s eduID project is working on a system that authenticates users with their
passport and biometric data. This is based on a product from the company Verifai1. Verifai offers
a so-called liveness check2 to verify the user is indeed the document holder and is actually present.

1https://www.verifai.com
2https://docs.verifai.com/sdk/android/components/liveness-check

32

https://www.verifai.com
https://docs.verifai.com/sdk/android/components/liveness-check

This is done by asking the user to blink, move their head, speak some words, and verifying this
against the facial image in the passport.

It could be interesting to use this liveness check to authenticate the document holder both at
enrollment, but more importantly, at decryption. Only after the liveness check is performed, the
key server, implementing a split-key architecture, should release its secret key part. A drawback
of this approach, however, is that the Verifai liveness check is performed in-app, and thus requires
a certified reader app (we need to trust the app to perform the liveness check correctly). This is
a big change from the current prototype, where the reader app is not certified.

6.3 Other readers

Currently, the prototype uses an Android app as reader for e-passports (and an iOS app is still
to be developed). This is chosen as NFC-capable phones are commonly available at this moment.
However, there is no reason why reading e-passports should be limited to phones. For example, a
simple USB smart card reader could be used to read e-passports as well.

It would be interesting to investigate if it is possible to interface with a USB smart card reader
from a web browser, and if so, how this could be used to read e-passports. This way, using a reader
app would not be required anymore. This would also further simplify the infrastructure, because
no proxy server and decryption handshake between browser and reader app would be required
anymore.

33

Acknowledgements

I would like to thank Stephen Kellaway3 in particular, who has been working on a similar project
for the Dutch RDW4 and who helped me a lot during the early stages of my project, getting the
first version of my Kotlin library to work.

Apart from that, I would like to thank my supervisors at SURF, William van Santen and Nils
Vogels, for being great conversation partners to discuss this project with.

3https://github.com/playtime222
4https://www.rdw.nl

34

https://github.com/playtime222
https://www.rdw.nl

References

[1] International Civil Aviation Organization. Doc 9303 machine readable travel documents - part
11: Security mechanisms for mrtds. Technical report, ICAO, 2021.

[2] Eric R. Verheul. Remote document encryption - encrypting data for e-passport holders. 2017.

[3] Eric R. Verheul. A secure filesender service based on remote document encryption. 2020.

35

Appendix A

Glossary

3DES Triple DES (Data Encryption Standard). A symmetric key encryption algorithm (that is
considered to be broken).

AES Advanced Encryption Standard. A symmetric key encryption algorithm.

BAC Basic Access Control. A protocol for authentication and key establishment using symmetric
crypto challenge response (3DES), based on a key derived from the MRZ (document number, date
of birth and date of expiry). Required to communicate with the an e-passport.

CA (1) Certificate Authority. A trusted third party that issues certificates.

CA (2) Chip Authentication. Authentication protocol of an eMRTD’s for authenticating posses-
sion of the CA private key of a chip and for setting up stronger keys for further communication.

CAN Chip Authentication Number. A number that is used to authenticate a terminal towards
an e-passport. It is a simple number printed om a card (like a password).

CRL Certificate Revocation List. A list of revoked certificates.

CSCA Country Signing Certificate Authority. The organization that is responsible for a coun-
try’s PKI.

DG1 Data Group 1. A data group of an eMRTD that contains the personal data of the document
holder.

DG2 Data Group 2. A data group of an eMRTD that contains the facial image of the document
holder.

DG14 Data Group 2. A data group of an eMRTD that contains the Chip Authentication public
key.

DH Diffie-Hellman. A key agreement protocol.

DSC Document Signer Certificate. A certificate on the EMRTD from the document signer.

36

DS Document Signer. The party that signs documents. The DS certificate is signed by the
CSCA.

ECDH Elliptic Curve Diffie-Hellman. A key agreement protocol based on elliptic curve cryptog-
raphy.

EFsod Document Security Document. A file on an eMRTD that contains hashes on all data
groups, and a signature and public key from the Document Signer.

E-passport Electronic Passport. See eMRTD.

eID Electronic Identity Document. See eMRTD.

eMRTD Electronic Machine Readable Travel Document. See MRTD. A machine-readable travel
document that contains an integrated circuit chip (IC) for contactless communication. Recognizable
by a specific ICAO logo.

HSM Hardware Security Module. A device that is used to store cryptographic keys.

ICAO International Civil Aviation Organization. An agency of the United Nations that is re-
sponsible for the safety and security of international air travel. It standardizes machine-readable
travel documents.

IC Integrated Circuit. A microchip that contains a memory and a processor and allows for
communication with a different system.

MRTD Machine Readable Travel Document. A passport or other travel document that contains
a machine-readable zone (MRZ) and that is designed to be read by a machine.

MRZ Machine Readable Zone. The area of a machine-readable travel document that is designed
to be read by a machine. It contains, among other things, the name of the document holder, the
date of birth, the document number and the date of expiry.

NFC Near Field Communication. A technology that allows for contactless communication be-
tween a reader and a tag.

PACE Password Authenticated Connection Establishment. A protocol for authentication and
key establishment using asymmetric crypto challenge response. After key agreement, authentica-
tion can happen based on the MRZ or CAN. An more secure alternative to BAC.

PA Passive Authentication. The process of checking the hashes and digital signatures (from the
EFsod) on the data on the document.

PCD Proximity Coupling Device. The NFC terminology for the terminal that is connecting.

PICC Proximity Integrated Circuit Card. The NFC terminology for the card that is connecting.

PKI Public Key Infrastructure.

RSA Rivest–Shamir–Adleman. An asymmetric cryptosystem.

37

	Introduction
	About SURF
	Current end-to-end encryption in the FileSender project
	Problems with the current end-to-end encryption

	Remote Document Encryption
	RDE scheme in short
	Authenticating the e-passport holder

	SURFfilesender with RDE
	Alterations to the original secure filesender proposal
	Benefits of the proposed solution

	Basic RDE Scheme
	E-passports
	Secure messaging (BAC and PACE)
	Passive Authentication (PA)
	Chip Authentication (CA)
	Terminal Authentication (TA)

	RDE basic idea
	Trusting the reader

	ICAO compatibility
	Security

	RDE with document holder authentication
	RDE without document holder authentication
	Adding document holder authentication
	Privacy considerations
	Privacy considerations for the MRZ data

	Trust
	Key expiration and rollover

	RDE prototype infrastructure
	Overview
	Notes on our implementation

	Core components
	Data classes
	Enrollment
	Key generation
	Decryption (key retrieval)
	Cryptography implementations

	Infrastructure components
	Key server
	Proxy server
	Reader app

	FileSender integration
	File upload
	File download
	Notes on our implementation

	Going forward
	Key server
	User interface and user experience
	OCR in the reader application
	iOS support
	Support for more document types (drivers licenses)
	Encrypting for multiple keys
	Support for more ciphers

	Further research
	Split-key architecture
	Biometric authentication
	Other readers

	Acknowledgements
	References
	Glossary

