
Master thesis
Computing Science – Cyber Security

Radboud University

Measures against over-asking in
SSI and the Yivi ecosystem

Author:
Job Doesburg
job.doesburg@ru.nl
s4809327

First supervisor/assessor:
Prof. dr. B.P.F. Jacobs

bart@cs.ru.nl

Second assessor:
Dr. H.K. Schraffenberger

hanna.schraffenberger@ru.nl

October 13, 2023

Abstract

Self-sovereign identity (SSI) is a growing new paradigm for online identity man-
agement (IdM). In current implementations of SSI ecosystems, any verifier is
able to request any attribute from a user and get it disclosed as long as the user
approves this. Users are thus in full control over the disclosure of their own
data. While this control has major benefits for interoperability and availability
of data, it also burdens users with the responsibility to properly protect this
data, which is a responsibility many users might not be capable of bearing.

During disclosure of data in SSI, users must make their own decision on whether
a request for data disclosure is legitimate and made by a trustworthy party,
whereas in other forms of IdM, the identity provider (IdP) has a responsibility
as gatekeeper. The lack of this gatekeeper role could enable phishing, but even
more subtle, also enable over-asking: parties requesting disclosure of more data
than strictly required. The increased availability (unsiloing) of data in SSI
further contributes to this. Considering users potentially being unaware or
ignorant of protecting their own data, or simply subject to a power imbalance
when a party asks for data disclosure, we argue that over-asking could be a more
significant problem in SSI than in other forms of IdM. Users might unfairly
expect a privacy-friendly platform (that SSI platforms typically are advertised
as) to not allow them to violate their own privacy, while this is not the case.
This thesis gives an analysis of the problem of over-asking in SSI ecosystems
and considers multiple approaches to prevent it.

As a partial solution, we introduce the concept of protected attributes that can
only be requested by selected authorised requestors. This offers extra protection,
which could be useful for specific, highly sensitive attributes (like the Dutch
BSN or attributes from one’s DNA). For a broader definition of over-asking
(not limited to highly sensitive attributes), a general registration procedure for
verifiers must be implemented, requiring a central governing authority to certify
disclosure requests. While the administrative costs of operating such a governing
party can be high, a system based on open public self-registration that anyone
(e.g. democratic bodies and interest groups) can audit could significantly reduce
the costs, while still offering decent protection against the most significant forms
of over-asking.

While most of our findings are applicable to general SSI systems, specifically, the
Yivi ecosystem is considered. The goal is to take a pragmatic approach that does
not require too many changes to the existing infrastructure, does not compli-
cate the adoption of Yivi for all parties involved (especially verifiers) and keeps
the administrative load minimal while putting responsibilities at the responsi-
ble parties. Specifically, TLS-based verifier authentication and scheme-based
authorisation of disclosure requests are considered, as they can be implemented
with relative ease without introducing the hassle of key management for veri-
fiers. This approach, however, does not scale well to a global scale, which can
only be solved by fundamentally changing Yivi’s scheme infrastructure.

Ultimately, we conclude that SSI systems should give users more handholds
to prevent them from over-sharing their data, which requires both a technical,
organisational and UX design approach to the problem.

2

Contents

1 Introduction 3
1.1 Problem statement . 4

1.1.1 Trustworthiness of verifiers 4
1.1.2 The myth of true self-sovereignty 5
1.1.3 Expectations and responsibilities 6
1.1.4 Factors contributing to over-asking 7
1.1.5 Keeping data in context 9

1.2 Our contribution . 10

2 Related work 12
2.1 Privacy and identity management 13

2.1.1 Identity management towards of SSI 14
2.1.2 Refining SSI properties 15
2.1.3 Establishing trust in SSI verifiers 16

2.2 EU Digital Identity . 18
2.2.1 EUDI Trusted Lists . 19
2.2.2 eIDAS Trusted Lists . 19

2.3 Decision models for over-asking in SSI 20
2.4 Verifiable Credentials and Verifiable Presentations 21

2.4.1 Verifiable Presentation Requests 21
2.5 Yivi . 22

2.5.1 Yivi scheme as trust anchor 23
2.5.2 Yivi as SSI system . 23
2.5.3 Requestor scheme (pretty verifiers) 24

2.6 Existing authorisation mechanisms for data disclosure 24
2.6.1 Germain eIDs . 25

3 Protected attributes 27
3.1 System designs . 28
3.2 Authorisation methods . 29

3.2.1 Accumulator-based methods 29
3.2.2 Privacy-preserving issuer-announced authorisations 30

3.3 Comparing different system designs 30
3.3.1 Modifiability . 30
3.3.2 Scalability . 31
3.3.3 Granularity . 31
3.3.4 Authorisation context . 31

1

3.3.5 Transparency . 33
3.3.6 Overview . 33

3.4 Authoriser candidates . 34
3.4.1 Issuer as authoriser . 34
3.4.2 Scheme manager (wallet provider) as authoriser 35
3.4.3 Separate authorisation party 35
3.4.4 Multiple designs . 35

3.5 Finding a balance between data portability and privacy 36
3.5.1 Preventing a closed system 36
3.5.2 A new business model: verifier pays 36
3.5.3 Permissive or strict wallets 37
3.5.4 Grounds for restricting an attribute 37

3.6 Implementation in the Yivi ecosystem 38
3.6.1 Authentication using TLS 38
3.6.2 Scheme-based authorisation 38
3.6.3 Issuer-announced authorisation 40

3.7 Certified wallets . 41

4 Certified disclosure requests 43
4.1 Over-asking of non-sensitive attributes 43
4.2 System designs . 44
4.3 Authorisation procedure . 45

4.3.1 Classic authorisation procedure 45
4.3.2 Public self-registration . 45
4.3.3 Hybrid approaches . 46

4.4 Implementation in Yivi . 47
4.4.1 Online portal . 48
4.4.2 Scalability . 49

5 Afterthoughts 50
5.1 UX aspects of wallet applications 50

5.1.1 Permissive wallets and bypassing warnings 51
5.1.2 Historic disclosure behaviour 53
5.1.3 Displaying sensitive credentials 54
5.1.4 Protected attributes without authorisation infrastructure 54

5.2 Categorisation of credentials . 55
5.3 Federated schemes . 56

5.3.1 Governance benefits . 57
5.3.2 Hierarchical scheme signing 57
5.3.3 Scheme federation . 58
5.3.4 Just-In-Time scheme retrieval 58

6 Conclusion 60

7 Future work 62
7.1 Encrypted disclosure of protected attributes 62
7.2 Empirical research to user perception 63
7.3 Legal data protection responsibilities for SSI 63

References 63

2

Chapter 1

Introduction

Self-sovereign identity (SSI) is a growing new paradigm for online identity man-
agement (IdM). It is a claim-based, decentralised and user-centric approach to
identity management, where rather than identity providers (IdPs) providing in-
formation about an individual to relying parties (after authenticating the user),
those parties (issuers) issue their claims on the subject in the form of creden-
tials to the user itself, who stores them in a ‘wallet’ and can then disclose those
credentials (or parts of them, which are called attributes) to relying parties
(verifiers) directly.

This approach has notable privacy benefits because it allows users to control
their own identity without the IdP being involved in every interaction. Specific
cryptographic features allow them to share only the information necessary for
a given interaction in zero-knowledge.

While several implementations of SSI wallets have been around for several years,
their adoption has not yet become widespread. With the European Commission
announcing its EU Digital Identity initiative in 2020, mandating all its member
states to make interoperable SSI wallets available to their citizens by 2025, it
is to be expected that in the upcoming decade, this technology will gain more
traction. More users will possess an SSI wallet containing their credentials, and
more issuers and verifiers will appear.

In the current leading paradigm for identity management on the internet, fed-
erated identity management, centralised identity providers register a user’s on-
line identities and provide data to relying parties. Examples of such identity
providers could be parties like Google and Facebook, but also a government via
an eID(AS) solution like the Dutch DigiD. Users authenticate to such a central
identity provider, which in its turn provides identity information to the relying
party.

However, these identity providers are not always transparent about what data
they share and how they use the (meta)data they collect themselves about these
sessions. When using Google to authenticate towards an e-commerce store,
Google also learns the user is visiting that store. IdPs thus form a privacy
hotspot.

3

The architecture of SSI systems solves this problem, with the identity provider
(issuer) not having an active role in the disclosure of data. Users possess their
own data and can control it all by themselves. Only they can decide which data
they want to share with whom.

To our knowledge, all current implementations of SSI ecosystems are designed
so that every verifier in the system is allowed to request every attribute of a user.
Of course, users will have to approve this before data is actually disclosed; that
is one of the foundational principles of SSI wallets. But when a user decides to
proceed with information disclosure, there are no limiting mechanisms in place
that might prevent information from being shared. In principle, any party can
ask for any information about a user and receive it when the user approves the
disclosure. This makes SSI wallets a universal identity solution, with the user
in total control.

We used to consider this a feature of SSI wallets, but in this thesis, we will argue
that this can also be a privacy risk.

1.1 Problem statement
On the one hand, the user-centric nature of SSI, with great availability and
portability of data, is what makes it so appealing, as it gives users full control
over their own identity and data. In this regard, these features of an SSI ecosys-
tem can be considered a privacy benefit compared to previous architectures,
where third-party IdPs control a user’s identity.

On the other hand, however, giving users complete control over their identity
also shifts the responsibility of protecting that data to the user itself. This is a
responsibility many users might not be capable of bearing. Though intuitively,
shifting this responsibility to the primary stakeholder (the user) might seem
like a good idea, it is not always clear whether users are capable of protecting
their own data. The examples where users fail to protect their own privacy are
numerous (e.g. cookie popup dialogues, privacy configurations and social media,
browser settings, phishing emails, et cetera), both when they are being misled
(i.e. phishing or impersonation) or nudged (i.e. with dark design patterns [1]–
[3]), but even when they are not (plain ignorance or disinterest). As such, SSI
systems can be considered a privacy risk, too.

1.1.1 Trustworthiness of verifiers
The problem with users being solely responsible for determining the trustwor-
thiness of SSI verifiers is also presented by Chadwick et al. [4]: “Requiring users
to know which verifiers to trust is very similar to asking users to know which
websites to trust, even when they have not visited them before. Browsers and
web PKI now facilitate this process by using trusted third parties, namely X.509
Certification Authorities (CAs) [. . .]. Web browsers indicate if a secure TLS ses-
sion has been established to the domain validated web site by displaying a lock
icon next to the web site’s URL. Something similar will be needed for SSI [. . .]
to enable human users to determine if a verifier is trustworthy or not.” [4].

This viewpoint mainly considers a phishing scenario with possibly malicious

4

parties impersonating a legitimate party, trying to trick users into disclosing
data to them. While this is undoubtedly a risk, the problem can also be more
subtle.

1.1.2 The myth of true self-sovereignty
Credentials in SSI wallets are considered to be privacy-friendly because of fea-
tures like unlinkability, transparency, selective disclosure and control over dis-
closure. Users are self-sovereign because all information exchange takes place
via the user’s wallet and only after explicit consent by the user (‘Do you agree
with sharing the following attributes with party x? (y/N)’). Users are thus in
control, as no data is exchanged without the user agreeing. Though this system
is indeed beneficial to one’s privacy, it is far from perfect.

There are multiple reasons why just asking for user consent is not sufficient. For
example,

• users might be unaware or ignorant (possibly due to a cognitive bias caus-
ing them to not act rationally) of the sensitivity of certain attributes;

• there might be a power imbalance between the user and the relying party
(requestor).

For example, many users are unaware that their citizen registration number
(BSN, in the Netherlands) is a protected credential of which the processing, by
law, is restricted to only selected (authorised) parties. The average user is not
aware of this, nor will they realise the sensitivity of that attribute.

Or consider the, perhaps extreme, case of one’s DNA. People might intuitively
feel that their DNA is a sensitive piece of information. However, when asked
to share (parts of) their DNA profile, they might not oversee the consequences,
especially not when, for example, they are offered a discount on their next order
or when a potential future employer is requesting specific attributes during an
application process.

Simply hitting the ‘yes, proceed ’ checkbox can thus not be considered actual
consent in the context of the whole transaction between the user and requestor
as (legal) entities. One could merely consider it a confirmation of being informed
that data is being disclosed, not as freely given and well-informed consent.

Users can be unaware, ignorant, or subject to a power imbalance. This results
in either a significant knowledge, or power asymmetry. One could argue that
this should result in a duty of care, and value driven design of SSI wallet should
carefully take these factors into account [2], [3].

Informed consent and the GDPR

The European General Data Protection Regulation (GDPR) is one of the most
significant pieces of privacy and data protection legislation. In order to process
personal data, the GDPR, among others, requires parties to have a particular
processing ground for that data. These grounds, among others, can be consent
and legal or contractual obligations. When the processing ground is consent,
Recital 32 requires that the consent is “freely given, specific, informed and un-
ambiguous” [5].

5

The form in which consent is given is not specified by the GDPR; only does it
require that a “clear affirmative act” gives the consent. Naively, one might think
that hitting the ‘yes, proceed’ checkbox in an SSI wallet is a clear affirmative
act and, thus, sufficient to meet the requirements of the GDPR for consent as a
processing ground. The GDPR, however, also requires consent to be freely given
and well-informed. We argue that this is not always the case in the context of
SSI wallets.

Instead, we argue that the ‘yes, proceed’ button merely provides transparency
and the ability to object : by requiring the user to press the button, the user is
explicitly informed about the fact that data is going to be shared (and which
data exactly), and the user is able to abort the session in case they disagree
with it. Not objecting, however, does not imply free and well-informed consent.

The user might not be aware of the consequences of sharing the data. The wallet
interface simply does not offer the ability to inform the user in all detail about
all related aspects e.g. purpose limitation, necessity and minimality.

Moreover, the user is not necessarily free to choose not to share the data. After
all, not sharing the data simply means that the user might not be able to proceed
with the transaction they were trying to perform.

Consider, for example, the scenario where a user is performing an (online) job or
visa application which requires the user to disclose specific, possibly sensitive,
attributes. Refusing to share these attributes might mean the user is not able
to apply. In this case, the power imbalance between the user and the requestor
renders consent provided via an SSI wallet as a processing ground invalid.

1.1.3 Expectations and responsibilities
As we have seen, in reality, users are far less self-sovereign than the SSI tech-
nology might imply at first glance. Meanwhile, the promise of SSI to increase
one’s privacy could further strengthen the ignorance of users towards the topic;
users might expect a privacy-friendly system to prevent them from violating
their own privacy, even when, strictly speaking, they are making that decision
themselves. Users might still impute a responsibility towards the platform (the
wallet provider), issuers or parties encouraging the use of the wallet (like a
government or a relying party).

While one could argue about the moral responsibility, we argue that pragmat-
ically, it is not feasible to expect users to bear full responsibility for their own
privacy, for the reasons mentioned above. The general impression is that users
simply are not capable of making well-informed decisions about their own pri-
vacy, especially not in the context of a (technically and cryptographically) com-
plicated digital environment where there is also a power imbalance and where
usage of the platform is encouraged by a government.

In addition to the earlier mentioned problems, there might thus also be a mis-
match in expectations and responsibilities regarding the protection of users
against disclosing data that they should not disclose. One could consider that
this further contributes to SSI being a potentially dangerous technology.

6

1.1.4 Factors contributing to over-asking
As identified, in current SSI systems, users could end up sharing sensitive per-
sonal data with an untrustworthy party without being aware of it, even without
the system (their wallet) giving them tools to be aware of this. And even if a
wallet were to prevent this, ignorance or a power imbalance could still lead to
data disclosure to a seemingly trustworthy party but that still is not authorised
to process that data.

This phenomenon is referred to as over-asking : relying parties (or verifiers)
asking for more (or more sensitive, or sometimes higher assurance1) information
than actually required for the purpose they are being disclosed for.

Several factors further contribute to this problem.

Unsiloing of data First, the problem of over-asking is exacerbated by another
consequence of SSI wallets that is sometimes called unsiloing of data: making
data more readily available for disclosure. In an SSI system, all data about a
user is available in a single place: the user’s wallet. With all users having their
attributes readily available for disclosure, the barrier for other parties to ask
for these attributes also lowers. Parties offering services that previously would
not require users to identify themselves might just start requiring this simply
because it became easier to do so2. And parties might ask for more information
they would not require previously, just because the data became available.

No gatekeepers While over-asking can also occur in federated identity man-
agement, here, the identity provider (IdP) has a responsibility in establishing
whether the requesting party should receive the data3 and can be held account-
able. Laws and regulations can be put in place to enforce this and protect users.
IdPs, thus, to some extent, have the role of gatekeeper. This is not the case in a
user-centric SSI system, at least in the current implementations. Previously, as
a service provider, you had to convince an identity provider to disclose data to
you; now, you just have to convince the user (which, obviously, is much easier
considering the reasons described in section 1.1.2).

Loss of context-awareness Additionally, in federated IdM, users might as-
sociate a specific identity provider with a specific context (e.g. Google for online
games, DigiD for government services). When users are asked to use their na-
tional eID to log in to an online game, they might be intuitively more reluctant
to do so, as they might not want to share their government-issued identity
information with an online game platform. In an SSI system, however, this as-
sociation between an IdP (and the data it provides) and its context is lost, as all
credentials are stored in a single place and disclosed in the same manner. This
makes users even less aware of what data they are sharing with which party.

As such, SSI could be seen as an enabler of sphere transgression, a term in-
troduced by Sharon [7] to describe the process of Big Tech involving itself in
increasingly more Spheres of Society [8], where data flows from one context to

1For example, when self-asserted data would suffice, as discussed in [6].
2This phenomenon in itself is actually called over-identification.
3At least in theory, they should do so.

7

another, potentially violating one’s privacy. We will further discuss this in sec-
tion 1.1.5.

While intuitive from a privacy standpoint, the user-centric nature of SSI wallets
can be an appealing feature, it also makes them vulnerable. This all makes
the problem of over-asking even more prominent. This is also why over-asking
was listed as one of the dangers of SSI wallets by the Dutch Ministry of the
Interior4 [9].

Issuer perspective and interest

Finally, the problems mentioned above might also actually hinder the adoption
of SSI wallets. The fact that any party can ask for any attribute might dis-
courage issuers from making information available in an SSI system. This is
because, as an issuer, when issuing credentials to a user, you also lose control
over the data. The data gets out of your sight and becomes vulnerable in a
certain way: the data might be disclosed to other parties and be (ab)used in
different contexts than it was intended for.5

From a legal perspective, it is unclear to what extent which party is responsible
for protecting data residing in an SSI wallet. Though it might not be unrea-
sonable to argue that issuers indeed do not have a legal responsibility over data
stored in a user’s SSI wallet, it might not be unreasonable for parties to still
experience a moral responsibility either.

For certain parties, economic arguments could play a role, too. For example, the
Dutch Chamber of Commerce charges a fee for excerpts from their registry (both
for traditional excerpts and for issuing SSI credentials in Yivi). Currently, they
charge the user for this, but potentially, a verifier-pays business model could be
more fitting. We will further discuss such economic arguments in section 3.5.2.

At least, a case can be made that under certain circumstances, issuers might
also have an interest in restricting access to specific data they would issue in an
SSI system.

Encrypted attributes

This is why, in history, we have seen cases where parties decided to issue specific
attributes only in encrypted form. That is, the attribute’s value is ciphertext,
and the issuer only distributes the key to parties they want to have access to
the data.

For example, the Dutch VZVZ (Vereniging van Zorgaanbieders voor Zorgcom-
municatie, or Association of Healthcare Providers for Healthcare Communica-
tion) has, experimentally and for a short time, been issuing an encrypted form

4Apart from over-asking, over-identification is mentioned as a separate problem. Where
over-asking involves asking for more information (more attributes) than strictly required, over-
identification involves requiring identification at all where this would not be necessary. For
this thesis, we consider both problems as the same problem, as they are both related to the
trustworthiness and legitimacy of a request for data disclosure.

5Ironically, issuers experience the same problem as data subjects regarding contextual
integrity of their data.

8

of a user’s BSN as ‘healthcare code’.6 The reason for encrypting the BSN is
that they did not want to be held accountable for technically making the BSN
available to any other party requesting it.

This way of acting, however, stands perpendicular to other fundamental princi-
ples of SSI wallets, like transparency towards the user (a property called WYSI-
WYS, What You See Is What You Share, in [3]), which is why the credential
was never accepted in the Yivi production scheme.

1.1.5 Keeping data in context
Nissenbaum has defined privacy in terms of contextual integrity: the ability of
a user to keep information in its context [10]. Privacy is violated when personal
data from one context flows to another. This has become one of the most
popular definitions of privacy.

There are different ways to think about what we should consider for this context.
A schoolbook example would be the case of a person’s medical dossier being dis-
closed to their employer. This loss of contextual integrity would clearly violate
one’s privacy. Similarly, we also would not want our medical doctors to know
the details from our personnel file. The medical and employment contexts, con-
sidered as categories of personal data, should thus not be mixed. This closely
relates to Walzer’s Spheres of Justice [8].

Maintaining contextual integrity thus highly relates to separating such different
categories of data. There are, however, also more subtle cases. For example,
when one’s email address is disclosed for the purpose of ordering in an online
store but is later used for advertising purposes, this could also be considered a
break of contextual integrity (even if it is done by the same party). Contextual
integrity thus does not only relate to the data itself but also to aspects of the
metadata, such as the purpose that the data has been disclosed for and the party
that received it. Such aspects should thus also be considered part of the data’s
context.

We can also express this in (GDPR-)terms like purpose binding and data min-
imisation, or the more general (legal) concepts of necessity and sufficiency /
proportionality. Data should have a defined purpose, only be used for that pur-
pose and minimised accordingly; when data is not necessary, it does not have a
purpose and thus should be removed or not even be asked for in the first place.
The GDPR requires data processors to make data subjects (users) aware of
these concepts because, arguably, this information is required for users to make
an informed decision on whether they agree with the processing of their data.

In order to maintain privacy as contextual integrity, it is essential that users are
well aware of the context of a request for data disclosure: who will be receiving
the data and for what purpose (and potentially, what will happen with the data
after sharing, how long will it be stored and why is this data strictly required)?

The context can be considered as an abstract concept that contains some of the
aforementioned aspects, but one can also try to give it a more formal definition.

6https://github.com/privacybydesign/irma-demo-schememanager/blob/master/vzvz/
Issues/healthcareidentity/description.xml.

9

https://github.com/privacybydesign/irma-demo-schememanager/blob/master/vzvz/Issues/healthcareidentity/description.xml
https://github.com/privacybydesign/irma-demo-schememanager/blob/master/vzvz/Issues/healthcareidentity/description.xml

For example, in section 2.3 we will discuss decision models based on the context
of a request for data disclosure, and in section 3.3.4 we will further discuss the
importance of context binding.

1.2 Our contribution
As we have argued, the absolute user control that characterises SSI wallets can
be considered a privacy benefit but also a privacy risk. Several factors contribute
to the problem of over-asking, making it a more prominent danger than before
in other forms of IdM. We argue that, at least to some extent, an IdM system
should prevent data that should not be shared from actually being shared.

In this thesis, we give a detailed analysis of the problem of over-asking in SSI
ecosystems and try to find solutions to this problem. For this, we aim to find
solutions that enable users to make informed decisions about whether a party
and their request for data are authentic, trustworthy and legitimate.

Our work is aimed specifically at the Yivi ecosystem, which is a concrete imple-
mentation of an SSI ecosystem. When proposing solutions, we take a pragmatic
approach with a focus on making minimal changes to the current architecture
and implementation of the Yivi ecosystem that can be implemented in the short
term, as we believe this topic must be addressed with pragmatism. However, we
believe many of our more general findings can also apply to other ecosystems,
as the problem of over-asking is not unique to the Yivi ecosystem.

We consider two cases of over-asking. First (in chapter 3), we consider the
specific case of sensitive attributes being requested by unauthorised parties.
Then (in chapter 4), we consider general cases of over-asking, where the context
of the request is more relevant.

Though the Yivi ecosystem is a great way to securely (decentrally) store creden-
tials and let the user control whom they are shared with, some credentials can
be so sensitive that just being in control is insufficient. We argue that in certain
situations, issuers could have some interest, possibly a (moral) responsibility, to
prevent users from sharing those credentials, either as a duty of care or for legal
or economic reasons. For this purpose, we propose a solution for protecting spe-
cific highly sensitive attributes in the Yivi ecosystem by introducing so-called
protected attributes.

For the second case, we propose a broader solution for general protection against
over-asking based on certified disclosure requests and self-registration of re-
questors.

The challenge is to do this in a way that is compatible with the existing Yivi
ecosystem, does not require too many changes to the existing infrastructure,
does not complicate the adoption of Yivi for all parties involved and keeps the
administrative load minimal while putting responsibilities at the responsible
parties.

Concretely, we do not aim to introduce a dedicated PKI, as we do not want
to introduce the hassle of key management for requestors. Instead, our pro-
posal relies on TLS, which is already used in the Yivi ecosystem. Authorisation

10

happens via the existing schemes, which are simple, open and transparent.

In the end, we argue that our proposals are feasible and do not require too
many changes to the existing Yivi ecosystem, but does not scale well to a large
number of requestors. With some changes to the way schemes currently work,
this problem can be mitigated to some extent (section 5.3), but ultimately,
a more fundamental overhaul of the Yivi infrastructure would be required to
implement a dedicated PKI.

Additionally, we argue that users might wrongly, though not unreasonably, as-
sume an SSI ecosystem is a safe environment in which privacy-violating be-
haviour is impossible. For users to be capable of bearing the responsibility of
protecting their identity data, we argue that SSI wallets should give users more
handholds to prevent them from over-sharing their data. This does not only en-
tail technical or organisational measures but also measures related to usability
aspects of SSI wallets. As also described by Schraffenberger and Jacobs, “pri-
vacy by design must include careful UX design” [3]. In line with their work, we
present a number of possibly alternative, non-technical approaches to mitigate
over-asking in section 5.1 and section 5.2.

Reading notes
The problems that are discussed in this thesis are very interdisciplinary. While
the intended scope of this thesis is mainly technological, it is impossible not to
address the many legal, ethical or governance-related aspects. In fact, solutions
to the problem addressed cannot be merely technological but must always be
interdisciplinary. However, the author of this thesis does not have an extensive
background in these fields. Whenever such aspects are discussed, we try not to
go into too much depth and not make strong statements.

Also, while reading this thesis, we often use IdM and SSI terminology. This
means that terms like issuer and identity provider, or verifier and relying party
or service provider, are used somewhat interchangeably. Especially the terms
requestor and verifier are used both to indicate the same party, however, the
term requestor is used as a party requesting the disclosure of information while
the wallet might not have initiated disclosure yet, while we use verifier when
data is actually being disclosed.

11

Chapter 2

Related work

A significant challenge, maybe the foundational one, for user-centric claim-based
IdM like SSI is to establish a trust relation between verifiers and issuers. Verifiers
need to trust the claims that users present to them (i.e. the credentials that they
disclose) are valid and issued by a trusted issuer.

On a cryptographic level, this is typically achieved by (blind) signatures and
zero-knowledge proofs, maintaining unlinkability, selective disclosure and other
cryptographic features. On an administrative level, this challenge entails deter-
mining whether a specific issuer should be trusted in the ecosystem.

There are multiple approaches, either with a centralised trust framework, a
decentralised one (i.e. via a blockchain), or even hybrid approaches. While in
some systems, issuers need to be registered at a central administrative party, in
other systems, anyone can be an issuer and the trust relation is established via
a web-of-trust or, as we see most often, a blockchain is used as a source of truth
to establish consensus, guarantee integrity and for timestamping.

Typically, these design decisions of a system are founded in fundamental and
sometimes philosophical or political assumptions about society, (public) admin-
istration and governance. While centralised infrastructures tend to be based on
a continental European concept of governance, with an important role for cen-
tral governing bodies that establish a base identity for users and organisations,
a more Anglo-American concept of governance results in decentralised infras-
tructures without such central governing bodies and trust is established in a
different way. As such, there are different approaches to the concept of (issuer)
trust in SSI.

While most academic focus is on the trust from verifiers to issuers, to our knowl-
edge, there is no extended literature on the reverse: how can users trust
verifiers?

From a cryptographic standpoint, this is not unexpected. While features like
selective disclosure and unlinkability of credentials are essential in the trust
relation between verifiers and issuers, they are not required – even undesirable
in the relation between users and verifiers. Users should be able to maintain
a certain level of anonymity in the SSI system, but verifiers (or actually, at

12

this point, requestors) should never be anonymous, so users should always be
certain about with whom they are sharing their data. This certainty, however,
can easily be achieved with default cryptography.

While trust between users and verifiers is implicitly touched upon in more high-
level descriptions of SSI ecosystems, the first academic work explicitly mention-
ing the problem we address was recently published in 2023 ([4]). And while it is
getting more attention in recent implementations, especially in the EU Digital
Identity consortia, a thorough analysis of the topic is lacking.

2.1 Privacy and identity management
In 2005, Cameron described seven Laws of Identity as general principles that
“explain the successes and failures of digital identity systems” [11]. Though
not explicitly using these terms, he bases his laws mainly on experiences with
centralised and federated identity management systems. Meanwhile, he already
mentions the need for a “[. . .] unifying identity metasystem [to] allow digital
identity to become loosely coupled” [11] with a user-centric design and SSI-like
features. He also acknowledges that “the emergence of a single simplistic digital
identity solution as a universal panacea is not realistic” because users experience
the internet in many different contexts, and parties want to prevent spillover of
digital identity between these contexts [11]. For example, he argues that “it will
be a cultural matter whether, for example, citizens agree it is ‘necessary and
justifiable’ for government identities to be used in controlling access to a family
wiki”, and that even when a cross-sector agreement on a single simple identity
system could be made in one country, extending it internationally would be
impossible [11]. With this paper, he actually presents some of the foundational
problems that the SSI paradigm tries to solve.1

Specifically relevant to our research, Cameron mentions the concept of Justifiable
Parties in one of his laws: “Digital identity systems must be designed so the
disclosure of identifying information is limited to parties having a necessary and
justifiable place in a given identity relationship.” [11]. Meanwhile, Cameron
states that “[this] law is not intended to suggest limitations of what is possible,
but rather to outline the dynamics of which we must be aware” [11]. Simply put,
the identity system should make users aware of to whom they are disclosing their
identity and help users decide if this is justifiable (but not necessarily prevent
certain actions).

This is what we see in many federated IdM implementations. First, the IdP
determines that the relying party is an authorised party that can request cer-
tain data (which often involves the relying party registering itself and making
agreements with the IdP beforehand). Then, still, the identity provider displays
to the user which party forwarded them and what data is about to be shared.
The identity provider thus has an important role in deciding whether a party or

1In fact, his paper is based on experiences with the product ‘Microsoft Passport’, a
federated-like IdM system. Later, Cameron would work on ‘Windows CardSpace’, a user-
centric IdM system that looks even more like current SSI systems in its architecture. Later,
CardSpace would be discontinued and replaced by U-Prove, a system with cryptographic
features to maintain anonymity, which we can consider to be an actual SSI system.

13

request for information is justifiable, first by enforcing their own policies, and
then, by informing the user about this and asking for their consent.

2.1.1 Identity management towards of SSI
Allen describes the history of identity management paradigms in 4 phases [12]:

1. Centralised identity: administrative control by a single authority or hier-
archy

2. Federated identity: administrative control by multiple, federated author-
ities

3. User-centric identity: individual or administrative control across multiple
authorities without requiring a federation

4. Self-sovereign identity: individual control across any number of authorities

In 2003, Jordan et al. made a first step towards our current concept of SSI by
suggesting a “civil society approach” to “persistent online identity” that “gives
individuals a high level of control over how their profile is used”, for what they
call the Augmented Social Network [13]. They describe problems and short-
comings of then-existing (federated) identity solutions, hinting at a user-centric
design.

Jøsang and Pope in 2005 [14] describe a user-centric IdM architecture driven
by usability concerns about federated IdM on the growing internet and aiming
to simplify the infrastructure. They mention entities having multiple identities,
consisting of a number of characteristics or identifiers. Their proposal includes
a Personal Authentication Device (PAD) containing all credentials of a user,
which we currently would refer to as a wallet.

Cameron [15] also proposes a user-centric identity framework with a similar ar-
chitecture, mentioning different kinds of claims on user attributes, incorporating
principles of attribute-based credential systems.

While the concept of user-centric IdM did gain traction, actual implementations
never really got popular. As Allen summarises it, “[. . .] final ownership of user-
centric identities [remains] with the entities that register them”, making it that
“being user-centric isn’t enough” [12].

The concept of self-sovereignty is mentioned in blog posts by Loffreto about the
societal concept of self-proclaimed, or self-determined identities, as opposed to
of nationally registered identities [12], [16]–[18]. This idea is reflected by Allen’s
principle that in SSI, any user must be able to exist in the system without
the need for a third party [12]. This has significant consequences for the trust
framework of systems. From this thought, the concept of SSI became closely
related to blockchains as decentralised consensus protocols, being able to register
a user’s existence without relying on a trusted third party.

14

Blockchain and SSI

Consequently, existing SSI implementations are based on the idea of Decen-
tralised Identifiers (DIDs)2 as developed by the World Wide Web Consortium
(W3C), which are typically registered in blockchains. This enables users to al-
ways register an identity in the system without a central authority being able
to prevent it or ban them from the system. Graglia et al. state: “Skeptics
have sometimes described blockchain as a hammer looking for nails. Blockchain
for SSI is just the opposite; not a case of a hammer looking for nails, but of
a nail finding its hammer.” [19]. As such, some parties even argue that only
blockchain-based systems are truly self-sovereign. Giannopoulou, on the other
hand, defines SSI as blockchain-adjacent, but not blockchain-dependent [20].

Attribute-Based Credential systems and SSI

Meanwhile, developments on Attribute-Based Credential Systems (ABCs) [21]–
[23], as proposed by Chaum [24], [25], addressed privacy issues with exist-
ing identity systems and became suitable as a complete alternative to existing
IdM [26]. These developments focused on privacy-by-design concepts, like par-
tial identities/identifiers, unlinkability and selective/minimal disclosure, which
were also being adopted by concepts about SSI.

While the paradigm shift from central and federated IdM, via user-centric IdM,
to self-sovereign identity was mostly an ideological one about authority and au-
tonomy, developments towards ABCs were mostly cryptographically inspired by
technologies like zero-knowledge proofs and blind signatures, aiming to protect
privacy and offer anonymity. The first can be considered top-down, from socio-
technological ideas about how the concept of identity should be reflected online,
while the latter can be considered bottom-up approaches aiming to build an
identity system from technologies for cryptographic anonymity.

Most current implementations can be seen as a form of both, though the exact
mathematical properties with regard to the degree of anonymity that they de-
liver, differ per system. Notably, DIDs typically seen in blockchain-based SSI
systems are incompatible with the unlinkability property that ABCs typically
implement. However, we will not elaborate on such differences for the rest of
this thesis.

2.1.2 Refining SSI properties
Currently, Allen’s Ten Principles of Self-Sovereign Identity [12], as a comple-
mentary counterpart to Cameron’s Seven Laws of Identity [11], are by most
considered as the founding principles of SSI: existence, control, access, trans-
parency, persistence, portability, interoperability, minimisation and protection.

In his principles, the topic of privacy is treated in terms of user control, user
consent and minimisation of data disclosure (zero-knowledge proofs and se-
lective disclosure). Allen states that “[. . .] an identity system must balance
transparency, fairness, and support” and focuses on protecting the user’s au-
tonomy [12]. Notably, Cameron’s concept of justifiable parties is not explicitly

2https://www.w3.org/TR/did-core/

15

https://www.w3.org/TR/did-core/

reflected in these principles. The rationale behind this seems to be that because
users themselves are in control, there is no need for any party to decide on
justifiability (which is a feature); the user determines this themselves.

We argue, however, that in order to protect a user’s autonomy, the system must
support the user in determining whether a party (or better, a disclosure request)
is justifiable. Allen’s principles do not state such functionality.

While Cameron’s and Allen’s principles are leading and most cited, they are not
formally defined. Ferdous [27], in 2019, tries to perform a structured academic
analysis on them in order to create a common understanding of the concept
of SSI. He tries to give mathematical definitions, and he uncouples definitions
from the system’s architecture. This results in a more formal taxonomy of the
different system principles.

Additionally, there have been attempts to refine these principles. López [28],
for example, extends Allen’s guiding principles to 16, more specific system prin-
ciples. The topic of privacy with regard to the trust relation between users and
verifiers is implicitly touched upon by López, but ultimately he only argues that
regulations should be updated. He does not mention a role in this for the system
itself.

Naik and Jenkins again revise and extend the set to first 15 [29], and then 20
guiding principles [30] and try to align them with the European General Data
Protection Regulation (GDPR) [31]. In this process, however, they merely focus
on the specific blockchain that uPort3 [32], [33] and Sovrin4 [34], two popular SSI
implementations, use and how this affects GDPR compliance. A more holistic
analysis of GDPR compliance involving the system’s role in helping the user
inform to whom they are disclosing data is lacking.

In 2022, Pattiyanon and Aoki tried to analyse the compliance of SSI system
properties, resulting in a set of 42 properties that result from different laws,
regulations and standards [35]. They conclude that “while the consent property
prohibits PII [(Personally Identifiable Information)] disclosure without the user’s
consent, it is not fully consistent with GDPR article 5.1.(b) due to the lack of a
restriction on further processing. We believe this is an opportunity to enhance
the SSI system’s security and privacy through compliance” [35]. Their detailed
overview of properties as a product of their research [36], however, is inconsistent
on this topic. They still seem only to mention user consent.

As a conclusion so far, while Cameron does mention the concept of justifiable
parties in his original laws of identity, none of the papers specifying requirements
for SSI systems explicitly mentions methods to help users determine whether a
verifier’s request is justifiable.

2.1.3 Establishing trust in SSI verifiers
Only in June 2023, Chadwick et al. addressed the topic of trust in verifiers [4].
Specifically, they extend an existing trust framework for issuers, TRAIN [37],

3A project that is now split into Serto (https://www.serto.id) and Veramo (https://
veramo.io).

4https://sovrin.org

16

https://www.serto.id
https://veramo.io
https://veramo.io
https://sovrin.org

which uses ETSI TS 119–612 trust lists [38] based on DNS, for trust in verifiers
as well. For this, they build upon the existence of trust domain administrators
that define trust lists.

With regard to the underlying problem, Chadwick et al. describe a conceptual
model of the interaction between user and verifier. Two primary trust questions
are relevant [4].

1. Are the holders connected to the verifiers that they think they are?

2. Is the verifier a responsible entity i.e. can it be trusted with the personal
identifying information (PII) that it asks for?

As stated by Chadwick, the first question is a technical one and can, in online
scenarios, easily be answered by existing technologies, like TLS. The second
question, however, is about administrative trust and poses problems that are
less simple to solve.

Similar to how browsers implement TLS but need to know which Certificate
Authorities (CAs) to trust, this challenge also exists for SSI wallets. “We cannot
expect the user or wallet to be familiar with all the SSI trust domains in the
world, or worse still, which trust domain administrators should be trusted. So
should we expect wallets to come pre-configured with the list of trust domain
administrators? [. . .] The implication of this solution is that the wallet software
provider becomes the ultimate arbiter of which trust domain administrators are
deemed to be trustworthy.” [4]

Chadwick also presents a possible solution, comparing this problem with the
problems the first web browsers faced in the 1990s. “Web browser suppliers ini-
tially each configured their own (different) list of trusted CAs into their browsers
and allowed users to add and remove root CAs from this list. Then some of the
browser suppliers switched to using the CA trust lists provided by the operating
system providers. The CAB-Forum was initiated in 2004 in order to provide a
set of rules that CAs should follow in order to become trusted CAs that could
be added to such trust lists. Clearly, SSI is just at the start of this journey and
is at a comparable stage that X.509 web PKI was at during the 1990s.” [4]

It is important to realise that the challenge of determining trustworthiness is
greater than the problem we see in browsers. In browsers, CAs are only used to
determine if communication is happening to the server that belongs to the do-
main name that is displayed.5 It does not provide an answer to the question of
trustworthiness and over-asking. That requires an in-depth analysis of compli-
ance with (national) data protection regulations, like the European GDPR [4].

For the leading existing SSI ecosystems, no trust infrastructure for verifiers
exists at all. Solving this problem is thus far from straightforward, and there
are many steps to take.

5In certain sectors, e.g. banking, the CA can also verify the underlying entity offering the
service.

17

Figure 2.1: Overview of the EUDI Wallet roles [39]

2.2 EU Digital Identity
As presented in section 2.1.1 and section 2.1.2, SSI should be considered as
a paradigm to identity management, and no widely accepted specification of
a system’s architecture and behaviour exists yet. While implementations do
exist, standards are being developed, and interoperability is being striven for,
this is not yet achieved. However, as mentioned before, in 2020, the European
Commission initiated its EU Digital Identity (EUDI) project to create a single
European SSI system. By the scale of this initiative, it is interesting to analyse
the design decisions that are being made about this product, as they will most
definitely become guiding in the industry.

As of now, the technical details of this system are not strictly established, but
over a period of multiple years, different proofs-of-concept are to be developed
and used in experimental settings to learn about the matter and further define
the specifications. In 2022, the first version of the EUDI Architecture and Ref-
erence Framework (ARF) [39] was published, a technical document containing
requirements about the architecture of the EUDI system. While the current
version does not contain details on all matters, it does mention a few interesting
observations concerning the topic of this thesis.

Most importantly, the ARF specifically mentions that “mutual authentication”
between the wallet and verifier could be required for specific sessions. And
while it does explicitly mention that mutual authentication does not need to be
mandatory for every transaction, it does mention that some trust framework is
required for verifiers. Any further technical details, however, are lacking.

Currently, the Dutch government is developing a demo wallet application in an
effort to contribute to the development of the EU wide system6.

6See https://edi.pleio.nl.

18

https://edi.pleio.nl

2.2.1 EUDI Trusted Lists
While the ARF does not specify details on this trust framework, the document
does contain some hints. In the description of roles in the ecosystem, also
displayed in Figure 2.1, the ARF mentions a primary role for Trusted List
Providers (TLPs). Both verifiers (called relying parties in the ARF), as well
as issuers (called providers) and wallet providers, are registered at these TLPs.
Though this registration is positioned not in the scope of the ARF, it does
mention that: “when used, Trusted Lists need to provide a registration service
for the relevant entities, maintain a registry and enable third party access to the
registry information. The terms and conditions of entities to become registered
are for each registrar to determine unless specified in, e.g., sectoral rules.” [39]
However, the ARF states that “further precisions to the specifics about how the
trusted lists could be implemented will be brought later.” [39]

It is important to note that the TLPs in the ARF are considered to have a
primary role in the system and not a governance role, such as a National Ac-
creditation Body, Conformity Assessment Body, Supervisory Body or (Q)EAA
Schema Provider. It thus seems like an active role is envisioned and that this
role will not simply be assigned to a government (Member State). This implies
a design where relying parties (and providers) first need to be registered in a
trusted list in order to be accepted in the system.

Meanwhile, regarding relying parties, the ARF states that: “To rely on the
EUDI Wallet, Relying Parties need to inform the Member State where they are
established and their intention for doing so. Relying Parties need to maintain
an interface with the EUDI Wallet to request attestations with mutual authen-
tication” [39]. This implies a design where relying parties do not only need to be
registered at a TLP but also at the member state itself (while there is no specific
role specified for member states in Figure 2.1). The ARF is thus inconclusive on
the exact design and states that “Trusted Lists can be implemented in different
ways” [39].

2.2.2 eIDAS Trusted Lists
Despite the inconclusiveness in the ARF, it is possible to get a grasp of a plausi-
ble infrastructure design. The ideas of Trusted Lists seem to be inspired by the
existing eIDAS regulations that are implemented by national eID systems, which
also knows Trusted Lists of Trust Service Providers. In this system, every EU
Member State publishes an EU-EEA Trusted List (which are all contained in the
List of Trusted Lists, LOTL), containing a number of Trust Service Providers
that are based in that Member State. These can be both public and private
parties and are a form of Certificate Authorities that, in their turn, publish a
list of their (root) certificates for different purposes. For example, KPN B.V.
is a Dutch trust service provider with a number of certificates used for creating
signatures or timestamps. Any party compliant with eIDAS should trust these
certificates for their purpose.

The trust service providers are regularly audited by Conformity Assessment
Bodies, for which there are standardised procedures in the EU.

For eIDAS, a complete trust infrastructure thus already exists, and despite the

19

ARF not specifying this yet, it makes sense to simply extend this architecture
to the EUDI system as well. There are, however, challenges.

The eIDAS system is nowhere near as popular (with regard to the number of
involved parties) as an EU-wide SSI system could potentially become. In order
to be certified for eIDAS, extended assessments need to be performed. For all SSI
issuers (providers), this might still be feasible, but requiring similar certification
for all relying parties wishing to use the system might be unfeasible.

For example, something as fundamental as a digital infrastructure for establish-
ing the identity of relying parties (as legal entities) might not yet exist in all
European member states. And many relying parties might not be willing to pay
for the costs of certification. There could also be a scenario in which not all
relying parties need to be certified by a trust service provider, but only under
certain conditions. It thus remains interesting to see how the EUDI system rules
will be established in the near future.

2.3 Decision models for over-asking in SSI
Eisenlohr also addresses the topic of over-asking and over-identification in his
master thesis [6]. He starts with the notion that determining whether a request
is justifiable is not an objective decision (that, for example, could be automated).
Therefore, he argues that central authorities should be designated with the task
of deciding on this.

“They [. . .] need to very carefully evaluate if a perceived risk really warrants
collecting the attributes an organisation wants to request [. . .] and carefully de-
sign decision models for every possible context” [6]. He then (non-exhaustively)
compares different candidates as authorising parties based on values and criteria
he defines.

Eisenlohr thus does not state these central authorities should simply accept or
reject data requests, but instead, they should create decision models. These
are formalised models that describe under which circumstances (which context
definition for a request) a wallet should decide to allow7 or deny8 a data disclo-
sure request. Such decision models can be more expressive than just allowing
or denying a certain request and can take into account more of the context of a
request.

As implementation for the aforementioned decision model, designed by the au-
thorising party, Eisenlohr proposes a system of decision rules. Here, he builds
upon research by Anciaux et al. [40] and Ardagna et al. [41]. Anciaux et al.
propose a system of disclosure rules based on allow-listing (stating under which
situations certain data is allowed to be disclosed), while Ardagna et al. propose
a system of sensitivity labels and categories based on deny-listing (stating when
data is too sensitive to be disclosed given a certain context). Verifiers acquire
so-called authorisation certificates that allow them to request certain data from
a governing authority based on a specified decision model.

7That is, conditionally allow, while still asking for the user’s agreement.
8That is, either abort with an error or show a warning to the user.

20

While Eisenlohr does present a proof of concept implementation (inspired by
OIDC with W3C Verifiable Credentials9) of a system with decision models, even
supporting complicated decision models, he does not specify how such decision
models could be implemented in a real SSI system’s infrastructure with actual
authorising parties. Also, it is unclear to what extent Eisenlohr’s system is
practical in such an infrastructure. This topic that we address in this thesis is
thus still open for further research.

2.4 Verifiable Credentials and Verifiable Presen-
tations

Over the past decade, multiple implementations of SSI systems have been de-
veloped. As interoperability is a key principle of the SSI paradigm, the need for
standardisation of interfaces and protocols between systems and components has
been recognised. Verifiable Credentials10 (of which Verifiable Presentations are
a key component) are an example of an open standard that has been developed
by the W3C.

Verifiable Credentials (VCs) are designed to be a universal data model for rep-
resenting credentials in different SSI/ABC systems. The data model is based
on JSON-LD and is designed to be interoperable. It is flexible, allowing for
different trust models, cryptographic algorithms and signature formats. The
standard also defines a data model for Verifiable Presentations (VPs), which
are used to present Verifiable Credentials to verifiers. Verifiers should be able to
verify the Verifiable Presentation and determine whether the holder’s credentials
are valid and satisfy the verifier’s requirements.

Regarding trust, the Verifiable Credentials standard does not define any trust
model. The standard states: “The data model detailed in this specification does
not imply a transitive trust model, such as that provided by more traditional
Certificate Authority trust models. In the Verifiable Credentials Data Model, a
verifier either directly trusts or does not trust an issuer. While it is possible to
build transitive trust models using the Verifiable Credentials Data Model, imple-
menters are urged to learn about the security weaknesses introduced by broadly
delegating trust in the manner adopted by Certificate Authority systems.” [42]

2.4.1 Verifiable Presentation Requests
The W3C standard defines a standardised, universal and interoperable data
model for the most important interactions in SSI systems. Verifiable Creden-
tials offer a standardised way of representing credentials during issuance. Verifi-
able Presentations offer a standardised way of presenting credentials to verifiers
during a disclosure session. The W3C, however, has not defined a standard to
request Verifiable Presentations from a holder, despite this being a key interac-
tion in SSI systems. The VC standard does not specify in what form a verifier
should request a VP from a holder. This is somewhat intentional, as the stan-
dard is designed to be implemented in existing non-SSI-default protocols and

9https://openid.net/sg/openid4vc/
10https://www.w3.org/TR/vc-data-model/

21

https://openid.net/sg/openid4vc/
https://www.w3.org/TR/vc-data-model/

systems (like OpenID Connect), which already have their own way of requesting
credentials.

The W3C Community Group has, however, published a draft for Verifiable
Presentation Requests11. Additionally, the Decentralised Identity Foundation
has created a pre-draft for Presentation Exchange (PEX)12.

Apart from offering a way to define which credentials a verifier requests, these
proposals also offer a way to define the reason for the request (as an attempt to
include at least a part of the context), which the holder can use to determine
whether they want to disclose their credentials to the verifier. This could be a
valuable privacy feature, helping the holder to determine whether the request
is legitimate (though, obviously, simply stating the reason does not prevent
secondary use).

None of these draft standards, however, mention any form of a trust model
for verifiers, which would be required for wallet implementations to determine
whether a request is legitimate. Any implementations of this (like in Eisenlohr’s
thesis [6]), are not directly tied to the credential itself but only to the presen-
tation exchange protocol that uses the credential, which is not specific to SSI.
There is, thus, no universal solution that tries to solve the problem we address
in this thesis. This underlines the immaturity of the industry on this topic and
the need for further research.

2.5 Yivi
Yivi, formerly called IRMA13, is designed as an open-source implementation of
an attribute-based credential system, based on the IBM Idemix scheme [22],
which was one of the first ABCs designed. It is a minimal implementation
of Idemix in the sense that it does not implement all of Idemix’s cryptographic
features, such as deanonymising organisations or one-show credentials. The core
implementation started as a smartcard application but was soon rewritten for
smartphones. Currently, the Yivi ecosystem has been in production for several
years and is being maintained by the Privacy By Design Foundation14 (PBDF)
and SIDN15, the organisation responsible for the .nl top-level domain.

In the Yivi infrastructure, users have an app on their smartphones that stores all
credentials issued to them. Issuers and verifiers both run a dedicated backend
server that interacts with the app to perform issuance and disclosure protocols.
For issuers, this server is configured with a private key for signing credentials
upon issuance. For verifiers, no such key is required. Anyone can be a verifier
in the infrastructure.

For further details about the Yivi architecture, we refer to Yivi’s technical doc-
umentation16.

11https://w3c-ccg.github.io/vp-request-spec/
12https://identity.foundation/presentation-exchange/
13IRMA was renamed to Yivi due to legal trademark reasons in 2023.
14https://privacybydesign.foundation
15Stichting Internet Domeinregistratie Nederland, https://www.sidn.nl
16https://irma.app/docs/what-is-irma/

22

https://w3c-ccg.github.io/vp-request-spec/
https://identity.foundation/presentation-exchange/
https://privacybydesign.foundation
https://www.sidn.nl
https://irma.app/docs/what-is-irma/

2.5.1 Yivi scheme as trust anchor
Yivi uses a simple scheme as its trust anchor. This scheme17 contains infor-
mation about all issuers and credential types in the system, i.e. it contains the
public keys from all issuers that are allowed to issue credentials in the system
and a description of the form and meaning of these credentials. The client app
fetches scheme updates regularly. The scheme is published (both on a web server
and in a GitHub repository) by the Privacy by Design Foundation (hence, it
is called the pbdf scheme) and is signed by SIDN. As such, SIDN is a trusted
third party in the ecosystem.

Though there is currently only one production scheme, the underlying Yivi pro-
tocol does not require this per se. Multiple schemes can exist. The currently
available production built for the client app that is available to users is config-
ured for the pbdf production scheme, but in theory, other parties could host
their own scheme as well. For example, there is a demo scheme available for
testing purposes (and the production built for the app even has a hidden feature
available to enable this scheme).

Theoretically, anyone could set up its own trust anchor for Yivi, defining its
own scheme with its own issuers, credentials and public keys. The client app,
however, is currently not designed to support custom schemes.

2.5.2 Yivi as SSI system
Upon registration of a new wallet, the Yivi client app generates a new key pair
for the user. All credentials that are later issued to this wallet are bound to this
private key (though not directly, as we will explain next).

For practical reasons, the Yivi protocol involves a keyshare server. The keyshare
server also stores a second private key upon registration of an app and protects
it with a user PIN. The private key of the server, which is only unlocked after
presenting the correct PIN, together with the private key securely stored on
the phone, together form the secret key that is actually used for cryptographic
operations, like issuance and disclosure of credentials. Requiring a PIN and
storing the partial secret key on the keyshare server disables brute force attacks
on the user’s PIN and allows users to revoke their app in case of loss. The
cryptographic protocol is designed in such a way that the keyshare server only
learns when the user uses their app but does not learn anything about the
interactions themselves.

Users can opt to register an email address at the keyshare server (for notifica-
tion purposes), but further registration is anonymous and uncontrolled. The
keyshare server is run as a separate service, and, in theory, anyone could run
their own keyshare server.18 Issuers and verifiers do not interact with the
keyshare server; only the app does. As such, anyone can register themselves
an unlimited amount of times by creating a secret key, and as such, one could
view Yivi as an SSI system according to Allen’s principles [12].

17https://privacybydesign.foundation/attribute-index/en/pbdf.html
18An interesting observation is that in the available app, the keyshare server to use is

actually specified in the scheme. This could be separated as well in order to give users more
freedom in this, as the keyshare server does not need to be globally specified by the trust
anchor.

23

https://privacybydesign.foundation/attribute-index/en/pbdf.html

2.5.3 Requestor scheme (pretty verifiers)
In the Yivi ecosystem, any party on the internet can set themselves up as a
verifier. Upon interaction with a verifier (at the start of a disclosure session),
the Yivi app simply displays the hostname of the server the app is interacting
with when asking for consent. For most people, however, the hostname can
look ugly or confusing because it highly depends on the technical architecture.
For example, yivi.auth.prod.example.com could be a regular hostname for
Example BV. And when a party would outsource its infrastructure to a different
party (as we will discuss in more detail in section 3.3.4), auth.yivi-broker.com
could even be a legitimate hostname, which could be even more confusing.

Moreover, as also mentioned by Chadwick et al. [4], displaying the hostnames re-
sults in the same problem as browsers face, with malicious parties typosquatting
domain names to impersonate well-known parties.

As a countermeasure against this, SIDN offers verifiers the (paid) service of
including them in their so-called requestor scheme. SIDN offers this service as
pretty verifiers. In this scheme, a pretty name for the verifier can be included,
as well as custom messages specific to this verifier (e.g. making the app display
‘Example BV asks you to login’ instead of ‘yivi.auth.prod.example.com wants
you to disclose the following attributes: . . . ’). This removes possible confusion
for users of this verifier, replacing ugly hostnames with a more human-readable
name. Typo-squatting, however, is still possible. Typo-squatted domains will
not be displayed as a pretty verifier, but while non-pretty-verifiers still exist
in the ecosystem and users are used to seeing hostnames at all, users could
potentially still consider them as trustworthy.

The requestor schemes are not based on dedicated public keys, like the standard
issuer schemes, but simply use the server’s hostname. Because Yivi is expected
to run over HTTPS (in production), these hostnames are authenticated (using
TLS).

The requestor scheme is treated similarly to the regular issuer scheme. The
client app fetches scheme updates regularly, is published by the Privacy by
Design Foundation (and in a GitHub repository) and is signed by SIDN, making
them the trusted authority.

The requestor scheme functionality is not included in the Yivi documentation,
but Schraffenberger has written a blog post [43] about it.

2.6 Existing authorisation mechanisms for data
disclosure

The challenge of restricting relying parties’ access to personal data issued by
identifiers is not limited to SSI wallets. A very similar challenge is found in
e-passports, or eMRTDs (Machine Readable Travel Documents), as specified by
the ICAO (International Civil Aviation Organisation) [44]. This is an example
of a successful global standard that practically all passports implement (at least
to a certain degree).

Compliant passports contain a digitally signed copy of a person’s most essential

24

identity information issued by the government: their name(s), sex, nationality
and date of birth, and often a photo or even fingerprints. This data is stored
in several data groups (DGs); DG1 contains so-called MRZ data (e.g. name,
sex, nationality, date of birth), while DG2 contains a photograph, DG3 could
contain a fingerprint, et cetera.

Different parties, mainly at airports, should be able to read the information
stored in these data groups and verify if the person carrying the document is
indeed the document holder and if that person is indeed a citizen of the country
that issued the document. Passports could, in that sense, be considered a
decentral, user-centric IdM solution (similar to SSI), carrying a selected number
of credentials issued by the government.

Regarding the disclosure of data (reading from a data group), multiple proto-
cols exist. While we will not discuss the details in this thesis, an important
observation is that on most passports, reading the data in DG1 or DG2 does
not require any authentication. Cryptographic protocols are in place to ensure
physical access to the document is in place and prevent MITM or replay attacks,
but those protocols do not authenticate the identity of the relying party reading
the data. Anyone is able to read the most elementary data that is stored on a
passport (similar to the physical document).

For other data groups that contain more sensitive information, however, like
biometric data such as fingerprints or iris scans, relying parties (referred to as
terminals in this context by the ICAO) do need to authenticate themselves fur-
ther. This is accomplished by a so-called Terminal Authentication (TA) protocol
as a part of what is called Extended Access Control (EAC). This is basically a
simple challenge-response mechanism in which the terminal also provides a cer-
tificate issued by the government, of which the root key is stored in the passport.
Only after this, the passport will allow reading of the restricted data groups.
Essentially, this is very similar to an X.509-like PKI, yet in a different form that
is optimised for the computational limitations of smartcards.

2.6.1 Germain eIDs
Another important observation is that, while most passports allow for the unau-
thenticated19 reading of DG1 and 2 of a passport, this is not the case for all
passports. Specifically, German eIDs have implemented additional measures to
protect those data groups. Concretely, German eIDs always require terminal
authentication in order to read any data group of the document, not only for
the more sensitive data groups [45].

While, on the one hand, this measure prevents possible unauthorised parties
from reading personal data, it remains questionable how effective this measure
really is. As already mentioned, other protocols ensure physical access to the
document for communication with the document to be possible at all, and the
MRZ data is also physically printed on the document. Yet, this approach does
require all parties that require cryptographically signed identity information to
register themselves at the government and request a certificate for this purpose.

19That is, without requiring EAC.

25

Meanwhile, this requirement does complicate the technical infrastructure for
terminals. With regular e-passports, any device can read the contents of DG1
and DG2, but for German e-passports, these terminals need to be certified and
configured with a dedicated certificate. While this has not been researched, one
could argue that this more complex infrastructure is an important reason for
the German eID(AS) system, which is based on reading these passports, lacking
adoption [46].

To use the Germain eID(AS) system, users need to present their e-passport to
a USB NFC reader or their (NFC capable) phone. In itself, this is a standard
solution that many countries implement. For German eIDs, however, devices
first need to get hold of a certificate allowing them to read the data on the
passport. For regular citizens wishing to read the contents of their own docu-
ments, an automated procedure to register your reader at a government service
is implemented, but still, this is a complicated step that makes users drop out.
For actual relying parties wishing to use the data read from a passport, there
is a more complicated registration procedure, requiring them to set up dedi-
cated eID Servers with HSMs (Hardware Security Modules). This makes it an
expensive process.

We consider this a good example to address the importance of easy adoption
of a system for verifiers. When the costs of registration in the system are too
high or key management is too complicated, parties might simply not use the
system.

26

Chapter 3

Protected attributes

Previously, we have identified that in current SSI system designs, any party
can request disclosure of any attribute from a user. This is a problem because
requestors may not always be entitled to receive these attributes (think of the
Dutch BSN, certain health care credentials). Currently, users are expected to
identify when this is the case themselves and simply abort the session in such
cases. However, in section 1.1, we have presented several reasons why this is
not a realistic scenario.

One approach to solve this problem is with a system that controls which re-
questors can access (request) specific attributes. Requestors will need to acquire
authorisation to be able to request these attributes. We will call such attributes
with access control protected attributes.

As we will see, protected attributes are especially suitable for simple scenarios
where specific (sensitive) attributes require additional protection while the data
is in a user’s wallet. The approach is centred around attributes and, thus,
around the issuer.

It is probably desirable for the authorisation rules of this system to supersede
the user’s consent so that the user is not able to disclose attributes to requestors
that are not authorised to access them, even if the user would want to do so,
because of the reasons mentioned earlier (ignorance, unawareness or coercion).1
Meanwhile, of course, the user should still be able to deny access to authorised
requestors to access certain attributes, so this system should not replace the
user’s consent.

First, we will discuss several approaches to different system designs for authenti-
cation and authorisation (section 3.1, 3.2 and 3.3), considering multiple parties
for deciding on these authorisations (section 3.4) and related aspects and design
decisions (section 3.5). In section 3.6, we then propose a specific solution for
the Yivi ecosystem. Finally, in section 3.7, we make some critical remarks and
highlight possible limitations (and solutions to these limitations).

1In section 3.5.3, we will discuss this matter in more detail.

27

3.1 System designs
There are different approaches to designing a system’s infrastructure with access
control and authorisations. Multiple system designs can be interesting:

1. a simple (X.509-like) dedicated public key infrastructure (PKI),
where requestors receive a certificate from a certificate authority and prove
their identity to the user/wallet with a simple challenge-response mecha-
nism. This PKI, in its turn, can be implemented in different ways:

(a) For every protected attribute, a dedicated root certificate is defined.
Requestors receive a dedicated certificate from this root for every
protected attribute they are authorised to access.

(b) A single trusted certificate authority issues certificates that include
which protected attributes a requestor is authorised to access.

(c) A single trusted certificate authority issues certificates on the identity
of a requestor. Those are used to authenticate a requestor. Addi-
tionally, other methods are in place to authorise requestors to request
certain protected attributes.

2. rely for authentication on a lower-level protocol (like TLS) and im-
plement methods for authorisation based on these lower-level established
identities.

3. requestor authorisation can be attribute-based too: issuers of protected
attributes could, in addition to issuing AttributeX to users, issue an
MayAccessAttributeX to requestors that they need to disclose upon
requesting AttributeX. In this scenario, verifiers would become users
with a wallet, too.

Requestor anonymity The latter option (attribute-based), we do not con-
sider valuable. The unique features of this design would be anonymity and
unlinkability for the requestor, which, as mentioned in chapter 2, we consider
undesirable. For a user to give informed consent on attribute disclosure, the
requestor should not be anonymous.

PKI certificate revocation For all dedicated PKI-based methods, note that
the PKI should also implement revocation mechanisms so that certificates can
be revoked when a requestor is no longer authorised to access a specific attribute.
This can be challenging because the revocation mechanism should not be online:
the wallet should not leak to any party when an attribute is requested. Hence,
no revocation lists can be retrieved at the time of request. This should instead
happen in the background or in the case of Yivi, during communication with
the keyshare server.

This is also true for option 2 that relies on a lower-level protocol. Here, authen-
tication of the requestor in the lower-level protocol should not leak to any party
when an attribute is requested.

28

3.2 Authorisation methods
In system designs 1a and 1b, authorisation is included in the certificate in-
frastructure itself: the certificate itself forms the authorisation. For 1c and 2,
however, the requestor’s identity is only authenticated. In those architectures,
an additional authorisation system is required to determine if a requestor is
authorised to access a specific attribute based on the already established (au-
thenticated) identity. This can be implemented in different ways:

1. inside the credential, for every protected attribute, apart from its value,
the wallet also stores a list of requestors that are authorised to access it.
This list is generated during the issuance of the credential and is thus
signed by the issuer. When a requestor requests an attribute, the wallet
checks if the requestor is on the list.

2. every wallet keeps a central scheme that contains a list of authorised
requestors to access a certain attribute.

3. issuers expose a service to announce a current list of authorised re-
questors for a certain attribute, for example, by exposing some web API
that returns a list of authorised requestors for a certain attribute.

3.2.1 Accumulator-based methods
So far, all authorisation methods described above use allow-lists of authorised
requestors. This approach, however, obviously is not scalable. The size of this
list could become very problematic for attributes like the Dutch BSN, which
should be protected, yet would have a large number of authorised requestors.

Instead of storing a list of authorised requestors, we can use accumulator-based
methods to be more efficient.

A similar concept is also used to implement revocation in Yivi (though there, a
deny-listing approach is used): so-called revocation servers keep a list of issued
credentials and can mark credentials as revoked. During disclosure, wallets can
efficiently prove non-revocation (non-membership).

For requestor authorisation, a similar setup could be used. Using accumula-
tors, instead of storing a list of requestors, a single accumulator value is stored
that describes a set of requestor IDs. When a requestor requests an attribute,
the wallet checks if the requestor is included in the accumulator. For further
explanation on accumulators, we refer to work by, among others, Baldimtsi et
al. [47].

Accumulators can, in principle, replace allow-lists in all three aforementioned
authorisation methods: an accumulator value could be stored inside a credential
or in a central scheme. The most fitting implementation, however, would be to
implement accumulators in an issuer-announced authorisation architecture with
an authorisation server that exposes a current authorisation value. We discuss
the implementation later in section 3.6.3.

Though it is possible with this method to let verifiers anonymously prove that
they are authorised (proof membership of the accumulator), this is not required
for the authorisation system, as the requestor should not be anonymous (as

29

discussed earlier in section 3.1). We would only use accumulators for efficiency,
not for anonymity.

3.2.2 Privacy-preserving issuer-announced authorisations
The aforementioned issuer-announced authorisation method, when implemented
naively, leaks information to the issuer (the issuer knows when a requestor is
requesting an attribute). However, this communication can be made unlink-
able using the same infrastructure as for attribute revocation. Issuers could
broadcast authorisation updates, and wallets could, in the background, regu-
larly check for updates, updating their local authorisation lists. This way, the
issuer does not know when a requestor is requesting an attribute.

3.3 Comparing different system designs
In the previous sections, we have listed several approaches for implementing
access control for protected attributes. These architectures have different char-
acteristics and trade-offs. In this section, we compare these architectures on
several criteria. An overview of the comparison is given in Table 3.1 at the end
of this section.

3.3.1 Modifiability
Requirement 1 (Modifiability) Authorisations can easily be updated after
issuance of the credential (e.g. new organisations can be added to or removed
from the set of authorised parties without the user having to get a new credential
issued).

On the one hand, one could argue that authorisations should be immutable
in order to preserve purpose limitation: after issuance of a credential that is
restricted from being accessed by a specified set of entities, it should not be
possible to suddenly add new entities to this set. One could thus argue that
modifiability of authorisations should be undesirable.

On the other hand, there are many scenarios where authorisations should be
modifiable. Consider the BSN example: new organisations would need to be
added to the list of authorised requestors all the time because of the sheer num-
ber of organisations that are authorised to access the BSN. If authorisations
are not modifiable, the user must get a new credential issued every time a new
organisation is added to the list of authorised requestors. This would be im-
practical and bad for usability, especially considering users’ expectations of the
platform. Therefore, we argue that for most scenarios, the practicality of mod-
ifiable authorisations outweighs the argument of preserving purpose limitation.

An in-credential authorisation system is not modifiable, as changing authori-
sations requires re-issuance of the credential. Issuer-announced authorisations
(via a web API) are obviously easily modifiable. Scheme authorisations are also
modifiable but do require scheme updates, so modification can be expensive.

30

3.3.2 Scalability
Requirement 2 (Scalability) The number of authorised requestors can be
large without affecting the system’s performance.

Using an allow-list of authorised requestors is not scalable, making only a dedi-
cated PKI (with direct authorisation) suitable for large-scale usage. Implement-
ing the accumulator-based method as described in section 3.2.1, however, solves
the scalability issue for other methods (see also section 3.3.5). Additionally,
depending on the exact use case, for some credentials, the number of authorised
requestors could be so low that scalability does not need to be a problem.

3.3.3 Granularity
Until this point, we have discussed cases where a requestor is authorised to
access a certain attribute or not. For example, a government agency might be
authorised to access a user’s BSN, but a webshop is not. However, there are
more granular authorisation schemes possible. For example, medical profes-
sionals might be authorised to access medical data for their own patients only.
There could thus be scenarios where the fact that a requestor is authorised to
access a specific attribute cannot be globally determined but should differ per
individually issued credential.

Requirement 3 (Granularity) Authorisations can differ per issued creden-
tial (e.g. a requestor is authorised to access a specific attribute for one person
but not for another).

This scenario can only be implemented using authorisation method 1 with the
authorised requestors stored inside the credential. The other methods do not
allow for this level of granularity, as authorisations are globally defined. For this
reason, this property has an inherent conflict with the property of transparency:
if authorisations are transparent, they are globally defined and thus cannot differ
per credential.2

Arguably, this level of granularity might not be necessary for most use cases.
Whenever such a fine-grained level of access control is required, an SSI ecosystem
might not be the best system for data processing whatsoever. For completeness
of this comparison, however, we do include this property in the list to describe
the expressiveness of all possible solutions properly.

3.3.4 Authorisation context
So far, we have described authorisation as a binary concept: either a requestor
is authorised to access a certain attribute or not. As also concluded in Eisen-
lohr’s thesis [6], however, authorisations could be seen as (possibly complicated)
decision models that consist of decision rules, taking many inputs. In practice,
there could thus be more complicated scenarios in which it is essential to define
the context of an authorisation (as we have also mentioned in section 1.1.5).

2Strictly speaking, it could be possible to implement multiple sets of globally defined
authorisations, essentially allowing for a certain degree of granularity, but this would be very
unpractical. Practically, this would be the equivalent of defining the same credential type
multiple times, each time with different authorisations.

31

We will describe this problem with a very practical example of so-called brokers.

Brokers in Yivi

Within the Yivi ecosystem, some (relying) parties do not implement their in-
frastructure themselves. Instead, they outsource it to a third party acting on
their behalf, which we will call a broker.

Consider the case that organisation A outsources its authentication infrastruc-
ture to broker X. Organisation A should be authorised to request a specific
attribute, and thus, broker X is added to the authorised requestors. Now con-
sider Organisation B, which also outsources its infrastructure to broker X. Even
though Organisation B is not authorised, they could, if broker X were not to
prevent this themselves, use the authorisation for Organisation A to request
attributes they are not allowed to request. The responsibility for properly using
the authorisations is thus placed at broker X rather than the authorising party
itself.

We see the same problem in a different context without brokers, too. Consider
a large retail company using SSI for both its Human Resources department and
its retail activities. For the Human Resources activities, it could be very well
possible that this company is authorised to process the BSNs of its employees.
For their retail activities, though, they obviously are not. The fact that an
organisation is authorised to access certain attributes can thus be very context-
dependent.

In order to prevent this type of problem, authorisations should not only cover
the authorised party itself but also the broader context of the authorisation
should be defined: for what purpose can the data be requested?

This context could be defined in natural language but could also be defined more
formally, for example, using a set of other attributes that should be present in
the credential, together with a more formally defined decision model.

For a context in natural language, the wallet application could simply display
the description of the context to the user, who can then decide whether to share
the attribute or not (e.g. ‘Company X is asking to access your BSN for Human
Resources purposes’).

We argue that such a context in natural language, describing the purpose of
data processing and the type of transaction that the user is performing, should
always be included and displayed to the user for verification. This would alert
the user if an authorisation is (ab)used out of context.

Though the context here cannot be automatically verified nor enforced by the
wallet application, it does provide the user with the information needed to make
a more informed decision and misuse of an authorisation (issued for a different
context) can be noticed by the user. A screen with a notification as described
above, would probably alert regular retail customers of the company that some-
thing is not right, even though they might not be aware of the sensitivity of the
requested attribute itself.

32

Additionally, we could try to define a more formalised decision model for autho-
risation more formally, so the wallet application could automatically verify the
context of the request. In the example above, we could, for example, require
the presence of a credential in the wallet stating that company X is indeed the
user’s employer. However, we consider further research into this topic to be out
of the scope of this thesis.

Requirement 4 (Context definition) For every authorisation, it is possible
to define a context description.

Implementation of this property makes proving authorisation more complex
than just checking membership of a specific requestor ID in an allow-list. For
PKI-based methods, the authorisation context could be included in the certifi-
cate. For accumulator-based methods, the only implementation would be to
make a mapping of a whole requestor ID and context definition and include
that in the accumulator. Requestors would need to announce the context for
which their requests are authorised, and the wallet application would then need
to verify if that context definition, together with the requestor ID, is actually
included in the accumulator. We consider this implementation not elegant, but
it is the only way to implement this property using accumulator-based methods.

3.3.5 Transparency
Requirement 5 (Transparency) Authorisations can be publicly reviewed (e.g.
anyone can see who is authorised to access a protected attribute).

In certain circumstances, it could be desirable for authorisations to be trans-
parent (e.g. for governance reasons or when commercial third parties are the
authorising party). In a transparent system, anyone should be able to verify
which parties are authorised to access specific protected attributes.

How important transparency is, depends on the entity responsible for determin-
ing (cryptographically signing) the authorisations and to what extent this party
can be trusted. We will discuss this in more detail in section 3.4.

Transparency and accumulators In an accumulator-based system, though
the accumulator value can be public, it is impossible to enumerate the list of
authorised requestors solely based on the accumulator value. To make this trans-
parent, the issuer would still have to publish the list of authorised requestors in
some way so that anyone can verify that the list of authorised requestors is in-
deed valid and corresponds with the accumulator value. Not every wallet would
need to actually process this list, though, so this would not break scalability.

3.3.6 Overview
A comparison of the different authorisation methods in different access control
system designs on the aforementioned properties is listed in Table 3.1. We refer
to the previous text for a more nuanced description of the properties.

33

Method M
od

ifi
ab

ili
ty

Tr
an

sp
ar

en
cy

G
ra

nu
la
ri
ty

Sc
al
ab

ili
ty

C
on

te
xt

Dedicated PKI3 ++ − − ++ ++
In-credential − − + − +
In-credential (with accumulators) − − + + −
Central scheme +4 ++ − − +
Central scheme (with accumulators) + + − + −
Issuer announced ++ + − − +
Issuer announced (with accumulators) ++ + − + −

Table 3.1: Comparison of different access control system designs

3.4 Authoriser candidates
In the previous sections, we have discussed different methods of authorisation of
requestors: how to define that a requestor is authorised to request a protected
attribute. We have not explicitly discussed who this party should be: who
decides which requestors are authorised to request a protected attribute and
how they should make these decisions. This section will briefly discuss the
different options for the authorising party regarding this solution and relevant
considerations related to this topic.

This quickly touches upon legal, ethical, economic and governance topics. For
example, the question of rights and obligations towards personal information
(who ‘owns’ personal information) has been listed as one of the four ethical
questions of the information age [48]. However, we will not go into too much
detail on these aspects, as this is out of scope for this thesis.

Obviously, not all choices are compatible with all system designs, but for most
architectures, different decisions can be made. We will not elaborate on the
exact way of implementing the procedures.

3.4.1 Issuer as authoriser
Perhaps the most obvious choice for the authorising party, at least from a tech-
nological perspective, is the issuer of the credential. As an issuer, you already
have a lot of duties and responsibilities in the SSI system, and thus, it would be
logical also to include the authorisation of requestors in these. The issuer has
the most knowledge about the data and might thus be the most suitable party
to decide who should be authorised to access the attributes in the credential.

Moreover, one could argue that the issuer also has the most interest and even
perhaps a (legal) responsibility or duty to ensure that the attributes they issue
are adequately protected. As a data controller/processor, under the GDPR, you
have obligations to protect the data adequately. SSI wallets are no exception
to this, and one could argue that this obligation still applies when the data is

3Specifically, the methods where authorisation also happens via the PKI, being 1b and 1a
as discussed in section 3.1. Method 1c does not use the dedicated PKI itself for authorisation
and thus does not fall under this category for the purpose of this comparison.

4Requires a scheme update, which is feasible but does not scale well.

34

issued and resides in a user’s SSI wallet. Defining authorisations would be a
way to enforce this.

For certain kinds of attributes, especially those where the issuer has a specific
interest in protecting the data as well, the issuer would be the best candidate
for authoriser. However, for many other (more general) kinds of attributes, the
issuer might not be willing to take on this responsibility.

3.4.2 Scheme manager (wallet provider) as authoriser
The issuer is not the only party that could be made responsible for the autho-
risation of requestors. At least in the Yivi ecosystem, the scheme manager is
responsible for defining the scheme and (by that means) allowing parties (is-
suers) access to the system and could also be assigned this role. The scheme
manager already has some form of gatekeeper role in the ecosystem and, for
example, also decides on which credentials can be issued and their form and
meaning (though the wishes of the issuer are generally followed).

Arguments in favour of this approach are that the scheme manager is considered
to be a trusted, neutral party. No economic incentives should be involved in the
scheme manager’s role, and thus, they are less likely to abuse their power. This
is especially important in ecosystems where the issuer is a commercial party, as
they might be tempted to authorise only requestors willing to pay for it. We
will discuss this topic in more detail in section 3.5.2.

Apart from that, depending on the system design, the scheme manager could
have better knowledge about the requestors/verifiers in the ecosystem and thus
be better suited to decide who should be authorised.

However, a disadvantage of this approach is that it might not scale well. Keeping
track of all the authorisations might be too much work for the scheme manager,
especially in large ecosystems.

3.4.3 Separate authorisation party
Finally, it is also possible to have a separate party responsible for authorising re-
questors. This party could be a trusted, neutral party, like the scheme manager,
but it could also be a commercial party. The same arguments as in section 3.4.2
apply in this case. For different credentials, however, different parties could be
assigned, so there will not be a single party responsible for the whole burden of
managing all authorisations.

3.4.4 Multiple designs
It could be desirable that for different kinds of attributes, different kinds of au-
thorising parties would need to be defined. For more general, legally protected
attributes, like the Dutch BSN that may only be processed by selected organ-
isations for selected purposes, the scheme manager or a third party seems to
be a good fit for the authoriser, while for certain more specific attributes, the
issuer might be the best fit. Ideally, the SSI system allows for multiple models.

35

3.5 Finding a balance between data portability
and privacy

Though implementing a system with the described features might not be chal-
lenging from a purely technological perspective, the consequences for the whole
SSI ecosystem can be large. One of the fundamental principles of SSI wallets is
portability [12]. While on the one hand, we want to implement a system pre-
venting users from sharing attributes with parties they should not share them
with; on the other hand, users should be able to share data with whoever they
want, without anyone (e.g. the issuers) preventing it.

A completely open system (where anyone can request all attributes) is great
for data portability but has privacy risks, as described above. On the other
hand, a completely closed system, e.g. one where each credential can only be
requested by a minimal number of requestors, cannot be considered genuinely
self-sovereign. A balance must thus be found.

We will further illustrate this problem and possible considerations below.

3.5.1 Preventing a closed system
As described above, the issuer is the most practical choice for the authorising
party. However, this gives issuers quite some power: they could simply close the
system by protecting all credentials they issue and charge potential requestors
money to be authorised. To safeguard the fundamental principles of SSI ecosys-
tems, we argue that this should be prevented. This is an important consideration
to make when designing a system. Protected attributes should add extra secu-
rity to an SSI system but not violate its other principles. This can be a reason
not to give issuers complete control over defining whether attributes should be
protected and who could access them in those cases.

3.5.2 A new business model: verifier pays
Having the issuer fully decide on who is authorised to request an attribute could,
on the other hand, also enable a new business model for issuers. In the current
ecosystem, attributes are issued to users either for free (the vast majority) or
paid by the user (for example, the Kamer van Koophandel credential, which
costs a couple of euros, similar to requesting a traditional excerpt). Apart from
issuer-pays and user-pays credentials, an ecosystem with authorised requestors
would enable a third model: verifier-pays. Issuers freely issue credentials to
users, but for a verifier to request them, they need to be authorised by the
issuer, which requires them to close a contract.

A possible use case could be the financial or insurance sector with compliance
checks. Parties like Stichting CIS or Justis already do compliance checks on
individuals to determine whether they do not appear on international financial
sanction lists or do not have criminal records. Such certificates already exist at
present and can be pretty expensive (the costs of a Dutch VOG are 30 to 45
euros, and a compliance check can cost up to a few euros as well). Often, the
party requiring such a claim pays for the research to be conducted.

36

One could imagine a situation where some relying party X (say, an insurance
company) closes a contract with organisation Y, paying them an annual fee
and, in exchange, be authorised to request the ‘PassesComplianceCheck’
attributes the issue. Other companies that do not pay the annual fee cannot
request those claims. A system like this could be an important economic mo-
tivation for issuers to actually issue attributes to users (for free) and thus be
good for the adoption of the platform.

This requires a highly modifiable system architecture where adding and remov-
ing authorised requestors is easy. Note that no architecture discussed before
allows for pay-per-usage, where a verifier pays for every individual transaction,
as this would break unlinkability.

3.5.3 Permissive or strict wallets
One consideration when designing this system is whether unauthorised requestors
should result in a full abort by the wallet application or merely a warning dis-
played to the user. Chadwick et al. call this a strict or permissive wallet [4].

It might be desirable to implement a way to bypass access restrictions in the app,
for example, by having a specific setting allowing for unsafe attribute disclosures
and/or having the app show a warning: ‘Party X has indicated only restricted
parties are allowed to request this data about you. Party Y is not included on
that list. Do you still want to proceed sharing this data with Party Y? (y/N)’.

On the one hand, a warning would greatly help portability and user control,
though, in a situation where there is a power imbalance between the user and
requestor, only a full abort would work, as users could simply be instructed to
‘skip the warning that you will see on your phone’. For both behaviours, a case
is to be made. The exact user interface design is highly relevant for these cases.
We will further discuss this in section 5.1.1.

3.5.4 Grounds for restricting an attribute
As described above, there is a significant challenge in maintaining an open
system while implementing protected attributes. In order to keep a grip on
this, a significant factor is determining which attributes should be restricted at
all and which should be unrestricted.

While making this decision, it is crucial to keep in mind the ultimate goal of
the restriction. Our main objective is to improve the user’s privacy: preventing
them from sharing attributes with parties they should not share them with (due
to thoughtlessness or power imbalance). We, however, also identified that in very
specific scenarios, economic arguments could be legitimately made. There is an
important role for a scheme manager to make a clear policy on this.

Though we acknowledge that economic arguments can exist, we think those can
be hard to judge. Therefore, we argue that these arguments should be made on
legal grounds. That is, only attributes can be restricted if there is a national
law explicitly restricting the processing or special types of ‘personal data’ under
the definition of the GDPR. This is a clear and (reasonably) objective rule that
the scheme manager can easily implement.

37

3.6 Implementation in the Yivi ecosystem
In the previous sections, we discussed several system architectures for SSI ecosys-
tems to introduce protected attributes and the considerations to make when
designing such a system. While being inspired by the Yivi ecosystem, we have
tried to keep the discussion as general as possible to make it applicable to other
ecosystems as well (though the concept of a scheme manager is very specific to
Yivi). This section will discuss how the Yivi ecosystem could implement such
functionality in further detail.

3.6.1 Authentication using TLS
In the previous, several system architectures were discussed. We have seen that
a dedicated PKI has many advantages in expressiveness: it is easy to modify
which requestors are authorised, define the authorisation context, and scales
well. However, setting up and maintaining a dedicated PKI for this sole purpose
is also a lot of work (for both requestors and the authorising party!). Keys
need to be managed; authorisation certificates must be issued and revoked, all
without leaking any information about the user. Implementation of a requestor
PKI would take a lot of work.

An important observation to make is that the Yivi ecosystem already makes
use of TLS. Sessions occur between a device (wallet application) and a Yivi
server on the internet. The server’s hostname (at least when developer mode is
not enabled) is already authenticated over TLS. As long as we maintain this
assumption (that sessions run over HTTPS), wallets can simply use the TLS
hostname for authenticating requestors. This is a straightforward solution for
authenticating requestors, as it does not require any additional infrastructure
and is actually already implemented in the Yivi ecosystem.

Yivi already implements so-called ‘pretty verifiers’, where verifiers can display
a human-readable name and logo in the Yivi app instead of their hostname
(to improve the user experience). This is implemented via a requestor scheme,
where the hostname of the requestor is used for identification. We can simply
use the same scheme for requestor authentication in the context of protected
attributes.

3.6.2 Scheme-based authorisation
In line with how ‘pretty verifiers’ are implemented in Yivi, using a requestor
scheme for authentication, we can also implement authorisation of requestors
referring to this scheme.

In fact, we propose to use a two-level scheme. At the first level, the requestor
scheme is used to authenticate a requestor, mapping their hostname to some
requestor ID. This should be the responsibility of the scheme manager SIDN,
which also already does this for Yivi pretty verifiers (though it could be a highly
automated procedure, as we will further investigate in section 4.4.1). At the
second level, the issuer scheme (in Yivi also simply referred to as ‘the scheme’)
is used to define the authorisation policy, mapping to requestor IDs from the
requestor scheme.

38

This split has the advantage that whenever a requestor entity changes its host-
name, only the requestor scheme must be updated without updating the issuer
scheme. The scheme manager of the requestor scheme is responsible for verify-
ing that the hostnames actually belong to the requestor.

1 <IssueSpecification version="...">
2 ...
3 <Attributes>
4 <Attribute id="BSN">
5 <Name>
6 <en>Burgerservicenummer</en>
7 <nl>Social security number</nl>
8 </Name>
9 ...

10 <AuthorisedRequestors>
11 <RequestorID>
12 pbdf-requestors.someauthorisedparty
13 </RequestorID>
14 </AuthorisedRequestors>
15 </Attribute>
16 ...
17 </Attributes>
18 </IssueSpecification>

Listing 3.1: Example (partial) Yivi scheme for a BSN as protected attribute.

1 [
2 ...
3 {
4 "id": "pbdf-requestors.someauthorisedparty",
5 "name": {
6 "en": "Example requestor",
7 "nl": "Voorbeeld requestor"
8 },
9 "hostnames": [

10 "authorised-requestor.example.com"
11],
12 },
13 ...
14]

Listing 3.2: Example (partial) Yivi requestor scheme referred to by Listing 3.1.

Required changes As mentioned before, the requestor scheme is already
implemented in the Yivi ecosystem and can be used in exactly its current
form. The issuer scheme, however, needs to be extended to support autho-
risation policies. We propose to add a new field to the issuer scheme, called
AuthorisedRequestors. This field is a list of requestor IDs that refer to the

39

requestor scheme, defining which requestors are authorised to request that at-
tribute. If the field is not present, the attribute is not protected and can be
requested by any requestor. If the field is present but empty, the attribute
should not be requestable by any requestor.

Features and limitations The benefit of this approach is that it is straight-
forward to implement. Almost no changes are required to the current Yivi
ecosystem, except for adding an optional field to the issuer scheme. We do,
however, acknowledge that this approach does not scale well. Modifying the
authorisations of a single attribute requires updating the issuer scheme of that
attribute, which can be expensive when there are many authorisations. Also,
the requestor scheme does not scale well. In SSI ecosystems, the number of
requestors is expected to be much higher than the number of issuers. The pro-
posed implementation requires every requestor to be defined in the requestor
scheme, which is not scalable.

Issuer-signed credential scheme An important observation is that in the
current scheme, issuers do not sign the scheme of the credentials they issue
themselves. The scheme is only signed by the scheme manager. As the scheme
manager and issuer have separate agreements, this is not necessarily a big prob-
lem, though it would be elegant if the issuer were to sign the scheme of their own
credentials as well. If issuers are to become the party responsible for authorising
requestors’ access to their own protected attributes and authorisations are to
be defined in the scheme, this would even be more elegant. However, this would
be relatively easy to implement in the existing infrastructure.

3.6.3 Issuer-announced authorisation
Above, we have proposed to define authorisations in the issuer scheme. As
already mentioned, however, this approach does not scale well when there are
a lot of credentials with authorisations that need to be frequently updated. As
a better scalable alternative, issuer-announced authorisations can also be easily
implemented in the Yivi ecosystem. Both systems can be implemented with
relative ease and can coexist. We thus propose to implement both ways of
defining authorisations, as they both might serve subtly different use cases.

For revocation of attributes, Yivi already knows so-called ‘revocation servers’,
which are servers that can be queried to check if an attribute is still valid.
We propose to extend this concept to also include ‘authorisation servers’. An
authorisation server is a server that can be queried to check if a requestor is
authorised to request a particular attribute. The issuer can host this server, but
it can technically also be hosted by a third party.

The advantage of this approach is that it scales much better while still being
relatively easy to implement, as a lot of the infrastructure is already in place.

Concretely, protected attributes would get an AuthorisationServer defined in
the scheme. Similar to the infrastructure for revocation, this server publishes
accumulator values for the authorised requestor IDs. For transparency, this
server would also need to make actual allow-lists available so people can verify
which organisations are authorised (see section 3.3.5).

40

1 <IssueSpecification version="...">
2 ...
3 <Attributes>
4 <Attribute id="BSN">
5 <Name>
6 <en>Burgerservicenummer</en>
7 <nl>Social security number</nl>
8 </Name>
9 ...

10 <AuthorisationServers>
11 <AuthorisationServer>
12 https://issuer.example.com/yivi/AuthorisationServer
13 </AuthorisationServer>
14 </AuthorisationServer>
15 </Attribute>
16 ...
17 </Attributes>
18 </IssueSpecification>

Listing 3.3: Example (partial) Yivi scheme for issuer-announced authorisations.

3.7 Certified wallets
So far, we have discussed solutions in which the wallet application is responsible
for enforcing the authorisation policy. It is, however, important to note that in
decentralised and open ecosystems (as fundamental to SSI), we have no guar-
antees on the wallet application that a user is using. In the Yivi ecosystem,
users can use any wallet application supporting the Yivi protocol. Currently,
such alternative applications do not exist, but nothing prevents them from be-
ing developed. If such an application were to be developed, it could ignore the
authorisation policy and simply always send the attribute to the requestor.

At first, one needs to determine whether to consider this a problem at all. If
people choose to use a different wallet application, they simply choose lower
privacy guarantees. When implementing protected attributes purely for the
user’s own benefit, this should not be too much of a problem.

On the other hand, when we consider the issuer perspective, with protected
attributes serving their legitimate interests, this behaviour would be undesirable.
In fact, if issuers need the guarantee that users cannot violate the authorisation
policies, the proposed solutions do not work.

To fix this, we must introduce the concept of certified wallets. The software of
a wallet application would need to be certified by some central authority to en-
sure that it enforces the authorisation policy. The phone running the application
could then prove that it is running the certified software. This implementation
is rather straightforward in current software development. However, it does
conflict with open software principles, which are also fundamental to SSI.

This proof would need to be sent either to the issuer (only at issuance) or (in

41

the Yivi ecosystem) to the keyshare server, which can then verify the proof
and decide whether to send the attribute to the requestor or not (in which
case the issuer needs to trust the keyshare server, too). This can be included
in the existing keyshare protocol that Yivi uses. We emphasise that, while
perhaps intuitive, it makes no sense to provide this proof to the requestor, as
the requestor is the party that is not trusted in this scenario (they are the ones
that are not allowed to receive the attribute).

As we can see, more complex technical changes to the infrastructure are required
to fully enforce this policy and fully disable users from disclosing protected
attributes in the scenario where users can create their own wallet application.

42

Chapter 4

Certified disclosure requests

In chapter 3, we discussed one method for implementing access control on the
disclosure of what we called protected attributes in SSI wallets. This system is
suitable for specific, highly sensitive attributes where it is feasible (either for
issuers, the scheme manager or a third party) to establish a list of authorised
requestors for that specific attribute.

Though this system is robust and a proper solution for specific cases, it cannot
solve the problem of over-asking to its full extent. This is simply because it is
not possible for all attributes to establish a list of their authorised requestors
and the context in which a party should be allowed to request them. In fact,
most attributes should be requestable by numerous parties. Yet, over-asking
can still occur in these cases.

In this chapter, we will first (section 4.1) further analyse the situations that our
proposal of protected attributes cannot solve, working towards a second solution
that is able to prevent over-asking generally, yet requires a higher administrative
burden (section 4.2 and 4.3). Finally, we again propose an implementation for
the Yivi ecosystem in section 4.4.

4.1 Over-asking of non-sensitive attributes
Consider an online bookstore requesting your postal address and email address.
Both attributes are not sensitive. One could argue, however, that only the
postal address is actually required here to fulfil your order. Requesting the
email address attribute could thus be considered over-asking.

To fully prevent this form of over-asking as well, we thus need to implement some
form of access control on every attribute. As also discussed in section 3.3.4, we
have seen that the context of a request is crucial for determining whether the
request is justifiable. We see a similar thing here. While maybe the bookstore
requesting your email address could be justifiable in specific contexts (perhaps,
for marketing purposes or customer service), it could be not justifiable in the
context of simply placing an order.

43

Instead of authorising a party to have access to specific attributes, in this sce-
nario, it would be better to define for a party’s complete disclosure request,
including the context of that request, whether it is allowed. For example, the
online bookstore that uses Yivi for placing orders might have authorisations for
(1) requesting bank accounts and postal addresses for the fulfillment of orders,
and (2) requesting email addresses for marketing purposes.

Our previous approach with protected attributes was credential-centric: for
every credential, its authorised requestors are defined (together with the autho-
risation context). This works well for specific attributes, where the number of
requestors is low and can easily be defined, or when the issuer has an important
interest in the protection of the data as well.

For other credentials where this is not the case, a requestor-centric approach
can be implemented more easily: defining for every requestor which requests
this party is allowed to do. We will call such requests certified disclosure
requests. This approach works better considering that SSI typically has many
requestors and few issuers.

4.2 System designs
Similar to the credential-centric approach we discussed in the previous chapter
on protected attributes, there are different system designs possible. In fact, the
possible designs are very similar to the ones we discussed in the previous chapter,
though there are fewer ad-hoc variations. In this section, we will discuss these
different system designs and their advantages and disadvantages.

• First, again, a simple (X.509-like) dedicated public key infrastruc-
ture (PKI) can be implemented. In this case, however, there should just
be a single central authority issuing certificates to requestors (instead of
the theoretic possibility of having a different PKI per attribute). Every
requestor receives a certificate on their identity that also includes the re-
quest(s) this party is allowed to perform (and in which context). These
certificates are issued by a central authority that is responsible for the
authorisations of all requestors in the system.

• Alternatively, we can again rely on a lower-level protocol (like TLS)
for authentication of requestors. Authorisation is then done via a central
scheme that includes the certified disclosure requests a requestor is allowed
to make.

The first method is the most scalable since requestors carry their own certifi-
cates. Adding a new requestor to the system is easy since the central authority
only needs to issue a certificate to this party. Certificate revocation is a bit
more tricky (as timing may not leak information about disclosure sessions) but
definitely feasible with existing solutions for PKIs, such as certificate revocation
lists (CRLs).

In the second method, the central scheme needs to include the certified disclosure
requests for every requestor, which does not scale well, especially considering
that there are many requestors and few issuers in SSI ecosystems. The benefit,

44

however, is again that by relying on a lower-level protocol, we can use existing
solutions for authentication that do not require key management.

Additionally, the second method could be considered to be more transparent
since the authorisations are included in the scheme. In the first method, the
authorisations are included in the certificates, which are not necessarily public.
We would need to trust the central authority that issues the certificates. This
is not necessarily a problem, but normative arguments can be made that this
might be a desirable feature. As we will see in section 4.3.2, this transparency
might even be an essential feature to lower administrative costs.

4.3 Authorisation procedure
As mentioned in section 4.2, for both system designs in this requestor-centric
approach, a central trusted party (or parties) must be responsible for certifying
all requests from requestors. In this section, we will go into more detail on how
this process could work in practice.

4.3.1 Classic authorisation procedure
A classical, eIDAS-inspired authorisation procedure would consist of a verifier
providing an authority with documents on the data they want to process. This
could include a privacy statement, possible policy documents and agreements
regarding data processing, et cetera. The authorisation authority could typically
also require (regular) audits to assess whether the policies are being adhered to
properly and security standards are met.

While such procedures tend to give high assurance on data security, which might
be required for certain contexts, the costs are also extremely high and potentially
unrealistic for an SSI system to be functional on a large scale in all contexts.

Of course, the procedure does not have to be extremely strict for all parties,
which can reduce costs. Still, though, even when all auditing steps are removed
and verifiers only need to submit just a short document describing the requests
they want to do and for which reason, the administrative burden of running a
governance organisation to decide on the justifiability of those requests, would
already be very high. This is because it is a decision that can hardly be au-
tomated, and parties might appeal against the organisation denying a specific
request.

4.3.2 Public self-registration
To reduce this administrative burden, we could consider a system where re-
questors can register themselves and use transparency to our advantage. This is
an idea that has earlier been suggested as a possible solution to the problem of
over-asking by the development team of the Dutch Digital Identity (EDI) Demo
Wallet in the context of the EU Digital Identity initiative (section 2.2), though
no exact details have been published yet at the time of writing.

The fundamental assumption behind this idea is that we do not necessarily aim
to prevent over-asking completely. In fact, as discussed in section 1.1, over-

45

asking is not just an SSI-specific problem; it can occur in other forms of IdM as
well. Only certain characteristics of SSI-based IdM make it a more significant
problem, and the decentralized nature of SSI makes it hard to detect whether
over-asking is happening at a large scale.

As a society (i.e. the way national data protection authorities currently work),
we do not aim to protect everyone’s privacy perfectly and prevent privacy viola-
tions completely. That would not be feasible. We focus instead on high-impact
privacy violations (either due to the large scale on which they take place or the
sensitivity of the violation). Therefore, a measure against over-asking in SSI
also does not need to be perfect. It could be sufficient to implement a counter-
measure against the negative consequences (intransparency) of the decentralized
architecture that makes over-asking in SSI a more prominent problem.

Instead of having a central party that actually performs an audit upfront to
determine whether a requestor’s data requests are legitimate, we can have a
central party that simply does not perform any substantive assessment. In-
stead, it only enables requestors to register themselves in a public registry. This
registration should contain the attributes this party wants to request and for
which reason. This only requires the organisation to authenticate a requestor,
for which existing solutions exist and which can thus be automated.

Because the registry is public, this enables democratic bodies, interest groups,
privacy organisations and authorities to monitor the contents of this registry.
When a requestor is found to be requesting attributes that they should not
request, this can be reported to the central party, who could then revoke the
authorisation of this requestor.

The transparency of this system enables the public to monitor the authorisations
of requestors while it removes the administrative burden upfront. And while
over-asking can certainly still occur because of illegitimate entries in the registry,
this system would make this visible again, which is a first step before sanctioning.

While monitoring the public registry, certain interest groups could prioritise
specific highly sensitive attributes over others, while other groups could prioritise
larger (multinational) organisations over smaller ones or focus on particular
sectors, et cetera. Additionally, automated tools could scan the registry for
parties that request a suspiciously large number of attributes or do not provide
a seemingly reasonable purpose.

The rationale behind this approach is that by making the registry public, or-
ganisations have a natural interest in registering themselves properly and acting
in accordance with regulations, because anyone can hold them accountable for
this. Self-registration in a public registry would not be able to prevent ille-
gitimate requests from being possible in the system upfront, but still, parties
could be held accountable afterwards, which, in many cases, could be a sufficient
countermeasure against over-asking.

4.3.3 Hybrid approaches
We emphasise that the approach of public self-registration does not exclude the
possibility of requiring more extensive audits for requesting selected attributes
either. It could be very reasonable to, for example, implement a system in

46

which, for general disclosure requests, public self-registration is sufficient, but
for requests that contain selected, more sensitive attributes, further assessment
and possible audits are required in order to be certified.

Finally, one could also make registration optional for permissive wallet applica-
tions. Wallets could be configured (possibly by users themselves) to just display
a warning when a request has not been certified. While such decisions can be
implemented easily, they can significantly influence the actual behaviour of the
system. We will further discuss this in section 5.1.1.

Public self-registration could thus be considered as a practical intermediate form
of authorisation, right between the current situation in which users are entirely
on their own and a system where all requestors must undergo an extensive
assessment of their requests, which has high costs.

4.4 Implementation in Yivi
Following the same reasoning as in section 3.6, we consider it essential for adop-
tion not to introduce the burden of key management to verifiers, especially when
we would require this for all requestors (and not just those few that might want
to request specific protected attributes). Therefore, we again propose an imple-
mentation based on requestor authentication via TLS and authorisation based
on a central scheme.

This can again be realised with relative ease via the requestor scheme that
already exists in Yivi.

1 [
2 ...
3 {
4 "id": "pbdf-requestors.someauthorisedparty",
5 "name": {
6 "en": "Example requestor",
7 "nl": "Voorbeeld requestor"
8 },
9 "hostnames": [

10 "authorised-requestor.example.com"
11],
12 "certified_requests": [
13 {
14 "disclose": [
15 [
16 "pbdf.pbdf.email.email"
17]
18],
19 "reason": {
20 "1": {
21 "en": "To send you a newsletter",
22 "nl": "Voor het versturen van een

nieuwsbrief"
23 }

47

24 }
25 },
26 ...
27]
28 },
29 ...
30]

Listing 4.1: Example (partial) Yivi requestor scheme displaying a requestor
being authorised to request an email address for sending a newsletter.

As seen in Listing 4.1, the requestor scheme needs to be updated to contain
the certified disclosure requests a requestor is authorised to perform. For each
request, the JSON serialized session request (in ‘condiscon’1 format) is included
in the scheme, as well as a short description (for every individual attribute) of
the reason for the request, which the wallet should display to each user.

The scheme could possibly contain additional information about the request,
giving a more in-depth explanation of the context (e.g. why these attributes
are required, how long the data will be stored, et cetera) or the requestor (e.g.
contact details of the requestor’s privacy officer). This data could be included
to substantiate the request’s legitimacy but could also be displayed to the user
in the wallet (perhaps after the user clicks on a button for more information).

4.4.1 Online portal
Currently, the Yivi scheme (both the issuer and requestor scheme) is main-
tained by the Privacy By Design Foundation and signed by SIDN. From a
technical perspective, it would also be practical to assign those parties the task
of authorising requestors access to attributes. However, this is probably not a
responsibility those parties would want to take on. Therefore, we propose the
implementation of public self-registration.

To achieve this, an online portal should be created where Yivi verifiers can
log in (which could, of course, be implemented via Yivi, too, based on the
Dutch Chamber of Commerce credential) and manage their registration in the
requestor scheme. Via this portal, organisations should be able to register the
hostnames of the Yivi servers of their infrastructure, as well as the requests they
want to perform (containing the attributes they wish to request and the reason
for asking for them).

It is essential that some (automated) methods for proving ownership of these
hostnames are implemented in this portal, too. This could be implemented in
the form of a protocol with a Yivi server, as these should reside behind this
hostname, or by setting specific DNS records for the domain.

Periodically (and automatically), based on the entries in this portal, a new
version of the requestor scheme could be created, signed by SIDN and published
to the wallets.

1https://irma.app/docs/condiscon/

48

https://irma.app/docs/condiscon/

We remark that this portal could also be used for issuers of Yivi credentials.
Currently, issuers are expected to upload their public keys and change their
scheme by opening a pull request on the GitHub repository containing the Yivi
scheme. While this offers the same functionality (except for the automated
verification of ownership of hostnames), implementing an online portal could
potentially decrease the workload for SIDN.

4.4.2 Scalability
An obvious drawback of this approach is scalability. Currently, the Yivi ecosys-
tem does not have such a large number of verifiers (yet) that this would imme-
diately become a problem. However, including all verifiers in the scheme and
pushing that scheme to all wallets on every update might not be a long-term
sustainable solution if the ecosystem were to grow to a significantly larger num-
ber of verifiers. While accumulators could potentially alleviate the problem to
some extent, the required update frequency still makes this approach poorly
scalable.

Ultimately, a dedicated PKI is the only way to solve this scalability issue. This
is feasible but will be a significant change to the existing system.

49

Chapter 5

Afterthoughts

So far, we have tried to solve the problem of over-asking by implementing tech-
nical measures that enforce some form of access control on SSI credentials.
Especially for the broader definition of over-asking that requires a more general
solution, we have seen that scalability is a fundamental problem, not just from
a technical perspective (e.g. the size of the scheme) but also from a governance
perspective. The costs of having a single central trusted authority certifying
every data request (at least to some extent) can be very high and unrealistic for
a globally interoperable system.

Meanwhile, in section 4.3.2 on public self-registration, we have mentioned that
especially under the general broad definition of over-asking (not just considering
specific highly-sensitive attributes), the goal does not necessarily have to be to
completely prevent any form of over-asking upfront. Just adding more trans-
parency to the system, together with the ability to take measures after over-
asking is observed, can also be a reasonable solution. Sometimes, thus, more
simple and elegant solutions that do not enforce technical preventive measures
against over-asking, but do significantly diminish the problem at significantly
lower costs could be considered preferable solutions.

In this chapter, we will further examine several other approaches to, perhaps
not completely solving, but significantly preventing the problem of over-asking
in SSI. By the nature of these approaches, we will not elaborate on them in as
much detail as in the previous chapters, nor will we make concrete proposals
for implementations. Instead, these ideas can be interesting considerations for
solving the problem of over-asking in a non-default manner.

5.1 UX aspects of wallet applications
An important reason why complete prevention is a hard thing to achieve is that
it requires universal judgements on whether some request is actually justifiable
or not. Some even argue that leaving this decision to a third party is undesirable,
as it takes away the user’s autonomy and reduces privacy (which includes users
having a choice on disclosure) to compliance with certain policies [2].

50

Instead of having a central party decide on whether something is over-asking,
one could also consider the topic from the perspective of user empowerment and
let users make that decision all by themselves, staying closer to the leading SSI
paradigm.

Following this approach, the challenge for the system is to reduce all factors that
currently contribute to over-asking being a more significant problem for SSI.
The potential ignorance or unawareness of users (as discussed in section 1.1)
should be reduced as much as possible by properly informing users of all factors
that might be relevant to a deliberate decision on data disclosure.

To start with, the wallet should clearly display the context of the data request to
the user, so they can verify if that context is actually correct and data disclosure
in that context is acceptable for them. The application’s user interface could also
give the user additional tools to help users make a properly informed decision.

Considering permissive wallet behaviour, with users ultimately being able to
make their own decisions based on the information provided by the wallet ap-
plication, perhaps the greatest gains can be achieved in this area. And while the
ultimate power imbalance between users and verifiers cannot be taken away, in
many other cases where the power imbalance is not that important, these UX
aspects should definitely not be ignored.

Terpstra et al. describe this approach as implementing reflective (design) pat-
terns: “Individuals should thus be encouraged – through the design of the prod-
ucts [. . .] – to make individual choices [. . .] about privacy” [2]. To achieve
this, deliberate friction could be implemented ([2], [3]) to break habits and
give users time to think and become conscious of the interaction [2]. Examples
include deliberately slowing down interactions, making them more complex or
asking specific questions that might lead to different perspectives [2]. We will
present some concrete examples in this section.

5.1.1 Permissive wallets and bypassing warnings
We briefly touched upon the topic of permissive and strict wallets in section 3.5.3.
Chadwick et al. [4] introduced these terms to describe SSI wallets that either
display a warning to the user (i.e. permissive behaviour) when they are about
to disclose data to a (potentially) unauthorised party, or completely prevent
disclosure in such cases (i.e. strict behaviour). While under the conditions of
chapter 3, a case could be made for both behaviours (and perhaps a strict be-
haviour would be preferable considering the issuer’s interests or a user subject
to power imbalance), generally (considering the conditions of chapter 4), we
consider a permissive behaviour to be preferred.

A permissive wallet more closely follows the principles of interoperability and
data portability, which are fundamental to the SSI paradigm. The risk for a
closed system, as discussed in section 3.5.1, where users are not ultimately in
control anymore, is more significant in strict wallets. In fact, this problem is
what drove user-centric IdM towards SSI (see section 2.1.1).

Moreover, permissive behaviour would make a system with certified disclosure
requests more feasible, cheaper and easier for adoption because verifiers can still
use the system without actually being registered as an authorised party (which

51

could have costs involved). Parties could thus decide to wait some time before
actually going through this procedure in order to remove the warning.

So, while strict wallet behaviour could be desirable for protected attributes
(with only limited use cases, as discussed in section 3.5.2 and 3.5.4), for general
attributes, wallets should be permissive.

Considering a permissive wallet behaviour to be preferable, however, gives room
for a wide range of implementations. The exact way in which a warning is
presented to the user and how it can be bypassed has an immense influence on
its actual effect.

Below, we list a number of proposals for how wallets can implement the warning,
increasing in strictness.

• Wallets warn the user that they are about to disclose data to an unknown,
potentially unauthorised party. The primary button (visually) is to pro-
ceed, nudging users in this direction.

• Wallets warn the user that they are about to disclose data to an unknown,
potentially unauthorised party. The primary button (visually) is to abort,
nudging users in this direction.

• The warning contains an elaborate explanation of the possible risks of
disclosing the data that the user needs to read before choosing to proceed
or abort.

• Bypassing the warning is only possible after entering a PIN or password
or explicitly retyping the name of the party that is requesting the data.

• The wallet must be configured (via a settings screen) to allow warnings to
be bypassed. By default, the wallet always aborts.

• The wallet must be configured (via a settings screen) to allow warnings to
be bypassed. This configuration lasts for 15 minutes, meaning that after
15 minutes, users need to re-activate unauthorised disclosures in order to
bypass the warning.

All behaviour could be considered permissive, though obviously, there is a big
difference between all implementations. Depending on the actual SSI landscape
and details of the certification process, different design decisions can be made.

Van Elteren [49] has researched in her master thesis how different forms of such
friction can be implemented in Yivi, and to what extent it can be an effective
countermeasure for protecting the Dutch BSN. While she could not find a
significant effect in her research on preventing users disclosing the BSN (which
could possibly be explained by the setup of the experiment), she did find users
being more alarmed by the different approaches, so the measures are proven to
have some effect.

An important remark that is also mentioned by Terpstra et al. [2] is that with
these approaches, it is important that they do not become subject to habituation
(it should not become a standard procedure for users to pass the warning).

52

5.1.2 Historic disclosure behaviour
There are more aspects in which the wallet could provide more tools to the
user. For example, all times a user is about to disclose credentials to a new
party could be specifically important. In the phishing scenario as described by
Chadwick et al. [4], when users are disclosing data to a new organisation they
have never interacted with before, we argue that it could be relevant for the
wallet application to warn the user specifically about this fact. For the case of
over-asking by legitimate parties, this could also be interesting, as disclosing an
attribute to a new organisation for the first time is more sensitive than disclosing
it a second or third time to an already known (and trusted) organisation.

Most wallet applications already keep logs of disclosure sessions that have been
performed. Implementing this extra behaviour could thus be easy to implement.

As an example, every time a user is about to disclose their Dutch BSN to a
new organisation, the wallet could warn the user ‘You haven’t disclosed your
BSN to Organisation X before. Are you sure you want to disclose this data to
Organisation X? (y/N)’. Possibly, the warning could also include the attributes
that this organisation did already receive from the user as well. For completely
new organisations, the wallet could warn the user ‘You haven’t disclosed any
attributes to Organisation X before. Do you want to continue? (y/N)’, possibly
even warning that the identity of the requestor could not be reliably established.
A similar implementation for Yivi has been proposed earlier by Schraffenberger
and Jacobs [3].

Additionally, the wallet could, for each attribute, keep an overview of which or-
ganisations have received that attribute and make that overview easily available
to the user. This could help the user make informed decisions about whether
they want to disclose an attribute to an organisation (based on what they typ-
ically do).

Even more advanced, more modern wallet applications could implement some
form of neural networks trying to establish a standard behaviour of data dis-
closure to parties and warning the user when, for example, they are about to
disclose a large number of attributes that they usually would not disclose alto-
gether to the same party.

While similar approaches are generally quite successful in different kinds of
applications (e.g. web browsers, email clients, or bank accounts usually have
similar features), we think it is important not to overestimate the strength of
this measure for the field of SSI. Typically, we think the power of SSI systems
lies in the ability to reliably share information with a new organisation for
the first time, for example, during some form of enrolment. We think that
it remains questionable how popular SSI will become as a regular means of
authentication towards the same party many times (or to what extent other
forms of authentication will remain popular). It could thus very well be that,
in reality, a large part of the disclosure sessions for an SSI wallet will be to new
organisations. In that case, the value of presenting such warnings will be low, as
they will become subject to habituation [2]. The actual value of such measures
is thus yet to be seen and will highly depend on the actual developments and
adoption of SSI systems.

53

5.1.3 Displaying sensitive credentials
In chapter 3, we proposed the concept of protected attributes for specific, highly
sensitive attributes that require extra protection. We have focused on protecting
them with some mandatory form of access control for requesting them. However,
in order to actually properly protect the credential, it should be protected in
the user interface of the wallet application as well.

For example, we argue that it should not be possible to make screenshots of
the wallet application interface and (accidentally or deliberately) disclose the
credentials in that way. For most smartphones, measures can be implemented to
complicate making screenshots, and we argue that those should be implemented
when protected attributes are on screen.

Additionally, one could think of hiding the fields in the credential (like operating
systems usually do with password fields) and only briefly displaying them after
confirmation with a PIN or password. This offers some protection against so-
called shoulder surfers (people looking over your shoulder at your screen) or just
accidental disclosure when using the app for something different.1 Implementing
this behaviour might also, intuitively, make users aware of the sensitivity of such
attributes.

5.1.4 Protected attributes without authorisation infras-
tructure

When fully taking the user interface approach, a much simpler solution for
protected attributes could be considered that fully relies on the user interface
without introducing any authorisation infrastructure for requestors.

A very subtle way of doing this2 can be found in recent mock-ups3 for the
Dutch Digital Identity (EDI) Demo Wallet that is being developed by the Dutch
government (section 2.2).

The Dutch BSN here is displayed with an asterisk (*) symbol, which indicates
it is a sensitive attribute. Whenever a user is about to disclose this attribute to
any party, a small additional warning is displayed on the screen, reminding the
user that they are about to share a sensitive attribute that the other party may
not be authorised to receive.

Additionally, Schraffenberger and Jacobs have suggested a similar implementa-
tion for Yivi by color-coding disclosure sessions [3], which was also researched
by van Elteren as one form of friction [49].

While this is a very elementary measure that does not have any technical
strength, it could also be a very elegant solution in its simplicity. When users
are properly educated, and the wallet application sufficiently informs the user,
one could argue that this pure UI approach to protected attributes actually

1Meanwhile, it should always be possible for the user to see the value of some attributes in
some way for transparency purposes (as discussed in section 1.1.4 about encrypted attributes),
so completely hiding the attributes would not be a proper solution.

2At least, the mock-ups of the user interface display this behaviour. It is unknown whether
an additional trust infrastructure will exist in this wallet and in what form.

3https://www.figma.com/file/dO5pKIIIyDgG0N2ZX4C2xd/Designs_Demo_
NL-Voorbeeld-Wallet

54

https://www.figma.com/file/dO5pKIIIyDgG0N2ZX4C2xd/Designs_Demo_NL-Voorbeeld-Wallet
https://www.figma.com/file/dO5pKIIIyDgG0N2ZX4C2xd/Designs_Demo_NL-Voorbeeld-Wallet

could be sufficient (though obviously, any economic arguments from the issuer’s
perspective as discussed in section 3.5.2 and 3.7 are incompatible with this ap-
proach, as disclosure protection here is not in the user’s interest). Considering
only a few attributes of a user need to be labelled as sensitive (and habituation
is thus not a big risk), this simple approach might, in fact, be better than in-
troducing a whole authorisation infrastructure as proposed in chapter 3 for just
a few attributes.

We emphasise that in this case, while the authorisation infrastructure is left
out, a proper authentication infrastructure becomes even more important. In
order to let the user make an informed decision, the wallet application should
display proper authenticated information about the requesting party.

5.2 Categorisation of credentials
As mentioned before, one of the problems with the technical solutions from
chapter 3 and 4 is that they require a third-party judgement on the authorisation
of requests, of which the costs can be high. And while the solution of self-
registration can lower these administrative costs, the burden of maintaining the
open registry still exists. An ideal solution does not require such a third party.

In section 1.1.5, we have discussed Walzer’s Spheres of Justice [8], describing our
society by the hand of a number of spheres. Together with Nissenbaum’s view
on privacy as contextual integrity, we have argued that privacy is maintained as
long as personal data is kept within its context. While contexts consist of more
than just the category or sphere, they largely do fit within a single sphere. A
simple yet elegant and pragmatic approach to prevent over-asking could be to
apply these spheres to credentials in an SSI ecosystem and wallet as well.

First, the SSI platform should decide on a concrete list of spheres. This could,
in fact, be quite a challenge and a topic open for debate.

As a proposal, we define the following spheres: public administration, education,
healthcare, finance, work, leisure, and commerce.

All issuers and their credentials must be categorised in one of these specific
spheres. For example, someone’s bank account will be categorised in the finance
sphere, and their diplomas will be in the education sphere. Additionally, there
should be a general category that contains basic information about one’s base
identity that is compatible with all spheres (such as name, date of birth, et
cetera).

Additionally, verifiers should also register themselves in precisely one of these
categories (for example, via a requestor scheme, but it can also be completely
self-proclaimed). An online shop will, for example, register themselves in the
commerce category.

Data shared within a single sphere could be considered acceptable in any case.
However, when requesting data registered in a different sphere than the verifier is
registered in, the wallet application should warn the user about this, mentioning
that the user, for example, is about to share healthcare data with a commercial
party, which they may not want to do.

55

As long as the verifier registration is immutable, this system requires little to
no governance. A party registering themselves in a different sphere/category
than they are supposed to be in will only result in that party not being able
to request in its actual category. There is thus an incentive for requestors to
register themselves in the correct category. The immutability can easily be
achieved by, for example, making wallets keep a list of all requestors that it has
interacted with and their category.

We typically want to prevent parties from receiving information from different
spheres, and the proposed system does achieve this. As such, this could be
an interesting approach to prevent over-asking that comes at little governance
costs. Though it is far from perfect, it could be an interesting approach to
further investigate when designing SSI systems.

It is important to notice that certain spheres will often be mixed. For exam-
ple, your diplomas (from the education sphere) are relevant to your (future)
employer (work sphere). For other spheres, however, this is a bigger violation,
like healthcare data leaking to the commerce sphere. Wallet applications could
potentially implement different behaviours for different spheres, e.g. display-
ing different kinds of warnings depending on the exact spheres of the issued
credential and the requestor.

An important remark is that the Yivi system that we specifically discuss in this
thesis, already applies some categorisation of credentials its wallet interface.
However, these categories are not further used. Verifiers are not categorised
and credential disclosure is not limited by these categories.

5.3 Federated schemes
As mentioned before, the most significant problem with the proposed solutions
for the Yivi ecosystem, especially the one in chapter 4, is the scalability of
the scheme approach, both from a technical perspective (the scheme becomes
large) and a governance perspective (it is difficult for a party to manage the
scheme). This makes the scheme approach in its current form already potentially
problematic (where only issuers are included); even without any actual changes
to the scheme, Yivi requires an annual key rollover, and all previous public
keys for an issuer are stored in the scheme, resulting in quite a large scheme.
When an authorisation infrastructure for requestors is introduced, this problem
becomes significantly larger due to the relatively high number of requestors in
an SSI system compared to a low number of issuers (even though we do not
store public keys for requestors in our proposal).

It could be helpful to try to limit the technical and governance costs of the
scheme by limiting the scheme size and updates and splitting up the governance
responsibilities.4

4For now, we will only focus on the governance benefits, but in section 5.3.4, we will
examine how this can also give us technical scalability benefits.

56

5.3.1 Governance benefits
Currently, the Yivi ecosystem only knows one production scheme, signed by
one party based in the Netherlands. It would be logical for the system to
support multiple schemes, at least one per country in which issuers and verifiers
are based. This would split the governance responsibilities for the different
countries.

One benefit would be that a national scheme manager will only be subject to
their own national legislation, which could massively simplify their internal poli-
cies. In Europe, other legislation on data protection applies than in the United
States. National scheme managers will have less trouble balancing themselves
between multiple, possibly contradictory, legislation.

A nation-based approach, however, is not the only way to split up the scheme. In
fact, a true hierarchical scheme could be implemented to get further governance
benefits.

This approach could be taken for both issuers and verifiers (requestors).

Sector-specific authorities could be assigned to maintain a scheme for their sec-
tor. Such authorities have better connections with the actual parties they would
need to include in the scheme, which can be a major benefit. For example, a
National Research & Education Network (NREN) like the Dutch SURF co-
operation (Samenwerkende Universitaire RekenFaciliteiten) could be a scheme
manager for the education and research sector. SURF already has established
contacts within the Dutch education and research sector with consequently a lot
of domain knowledge, and it is also an internationally acknowledged organisa-
tion. This all contributes to the governance benefits of a split scheme approach.

For commercial parties, commercial scheme managers could exist. As such, a
multitude of smaller Yivi schemes could exist that are easier to maintain than
one single big scheme.

5.3.2 Hierarchical scheme signing
With multiple parties managing a (partial) scheme, there must be some way to
discover and trust these schemes. For this, classical cryptography can be used in
an X.509 Certificate Authority-inspired PKI. This approach is also very similar
to the eIDAS implementation (see section 2.2.2).

National scheme managers could be used as a root. The first time using a wallet
application, users should be able to configure the country or countries of which
the scheme should be trusted (or this happens by default based on the country
the user resides in).

In the national scheme, sector-specific organisations could be included. This is
done by including the keys they use for signing and/or the endpoints at which
they publish their (sub)scheme.

These lower-level (sector-specific) organisations can then define issuers and cre-
dentials in the scheme that they sign. Alternatively, these organisations could
only define issuers and let the issuer manage the credentials themselves in yet
another lower layer, as a subsubscheme.

57

5.3.3 Scheme federation
The possibility of multiple, hierarchical schemes has governance benefits but
also comes with the significant drawback that it limits interoperability. If every
country uses their own scheme, cross-country usage would not work: a Dutch
verifier would not be able to request a German attribute as they reside in differ-
ent schemes (or all parties would also have to configure the German scheme as
root, which is unpractical). However, scheme federation can solve this problem.

National scheme managers should be able to include each other’s schemes as
federated schemes. For example, the Dutch scheme could include the German
scheme as a trusted federated scheme and, as such, allow all users that use the
Dutch scheme to also use the German one.

Ultimately, hierarchical schemes with federation basically allow us to implement
the same functionalities as well-known PKIs with federated trust models. This
has many benefits with regard to flexibility, yet the complexity of the infras-
tructure could be considered a disadvantage.

5.3.4 Just-In-Time scheme retrieval
While there are major governance benefits to a hierarchical federated scheme,
this approach does not yet directly improve the technical scalability (size of
the scheme) if we still consider schemes to be downloaded to a wallet device
regularly. However, splitting up the scheme does enable improvements in this
field.

An interesting observation in this regard would be that wallet applications do
not necessarily need to keep a copy of the entire scheme. Instead, they only need
to keep a copy of the parts of the scheme for which they contain credentials. We
can use this to our advantage by implementing Just-In-Time (JIT) scheme
retrieval.

When an issuance session is performed, first, the issuer sends the signed (partial)
credential scheme of the credential that is about to be issued. Only then does the
wallet learn about the scheme of the credential, and the wallet stores it before
continuing the issuance session. A similar thing would happen upon disclosure.
The verifier, upon requesting attributes, sends along with the request the signed
(partial) schemes of all requested attributes and a signed part of a scheme that
says something about itself as a verifier and the reason for requesting these
attributes. Of course, all schemes need to be signed by a trusted key, either a
root key or from an earlier installed (federated) scheme.

Changing the protocol in this way would severely limit the amount of data a
wallet needs to store for the scheme, as only the scheme parts of actual cre-
dentials contained in the wallet need to be stored. Also, no updates have to
be pushed to all wallets, but schemes can be updated right when a session is
performed. This actually ensures that wallets will always have the latest, most
up-to-date version of the scheme at the time they need to use it. Only issuers
and verifiers will need to keep a signed copy of the credentials they are either
issuing or requesting and can serve the scheme when they are interacting with
actual users, right when it is needed.

58

Scheme updates only need to be pushed to issuers and verifiers and only for
the attributes that they use. A challenge remains in ensuring freshness of the
provided scheme (we must be certain that issuers and verifiers are providing us
with the latest, most accurate version of the scheme), but default solutions exist
for this, for example, considering technology behind certificate revocation lists
(CRLs).

So, while from a governance perspective, a central and public scheme still exists
(though possibly maintained by multiple parties in a hierarchical and/or fed-
erated manner), wallet applications do not actually have to keep track of the
complete scheme. This massively improves scalability while keeping the benefits
of the scheme approach.

Ultimately, this could be considered an intermediate version in the transition
from a central scheme as a trust anchor for Yivi to a dedicated PKI.

59

Chapter 6

Conclusion

In this thesis, we have given an analysis of the topic of over-asking in SSI
ecosystems. we have identified why this is a more prominent risk in SSI than in
earlier forms of IdM and what factors contribute to this. While SSI is generally
presented as a privacy-friendly technology and a privacy improvement over other
forms of IdM, we argued that in certain aspects, it could also be considered
a dangerous technology instead, as it burdens users with responsibilities they
might not be able to live up to. Moreover, we have discussed several approaches
to preventing over-asking, with specific proposals for implementations in the
Yivi ecosystem.

While doing this, we have considered two definitions of over-asking.

First, in order to prevent unauthorised parties from requesting specific highly
sensitive attributes (like the Dutch BSN or attributes from one’s DNA), we have
proposed the concept of protected attributes. These are attributes for which we
specifically define which requestors should be authorised to request them, in
contrast to general attributes in SSI that any party can request.

In Yivi, we have seen that this can be implemented with relative ease with veri-
fier authentication using TLS and authorisation in either of two ways, depending
on which is most applicable to the specific attribute: scheme-based (with the
scheme manager carrying responsibility) or via an issuer-defined authorisation
server with accumulators (which is less transparent but scales better when there
are many verifiers). The benefit of this implementation (over a classical PKI)
is that it allows for easy adoption by requestors as it does not require key man-
agement, and a lot of the infrastructure already exists in the Yivi ecosystem.
We consider both to be essential for a pragmatic and successful solution.

For the broader definition of over-asking that does not just consider specific
highly-sensitive attributes, there is an administrative/governance challenge, as
this requires a trusted authority to decide on whether certain data disclosure
requests are acceptable or not. The costs of running such an authority can be
high, though they can be significantly lowered by implementing open public self-
registration (at least partially, for most attributes), which enables democratic
bodies and interest groups to audit the procedures.

60

For the Yivi ecosystem specifically, we propose both the implementation of
protected attributes with strict wallet behaviour, but only for few selected at-
tributes, and general requestor registration based on open public self-registration
with permissive wallet behaviour, as both solutions have their own benefits and
strengths for specific use cases.

Though both solutions can be implemented with TLS-based authentication to
allow for easy adoption, the scalability of defining authorisation policies in a
scheme remains problematic. To solve any scalability issues with the Yivi
scheme, we have discussed a different setup for scheme management with a
hierarchical and federated scheme.

Ultimately, however, we concluded that the solution for over-asking does not
necessarily need to be purely technical. The goal does not have to be to fully
prevent over-asking but only to implement countermeasures against the factors
that make over-asking a more significant risk for SSI than other forms of IdM.
We argued that SSI wallets should properly inform users of the context in which
data disclosure is about to take place, provide users with the proper tools to
do this and educate them about the responsibilities and expectations of the SSI
system. This is not specific to the Yivi ecosystem but to any SSI system. As a
starting point, we have listed a number of ideas that wallet applications could
implement in order to help users better bear the responsibility of protecting
their own data.

With the current developments around the EU Digital Identity initiative, it will
be interesting to see how the SSI landscape will take shape in the upcoming
years and how the problem of over-asking will be addressed by the architectural
decisions that will be made, especially regarding the registration and certifica-
tion of data disclosure requests.

61

Chapter 7

Future work

In this thesis, we have tried to cover the topic of over-asking in SSI ecosystems
as completely as possible, with specific attention to the Yivi ecosystem. While
we have provided several approaches to solve the problem to some extent, we
ultimately did not find a perfect solution. In this chapter, we will identify several
directions for future research.

7.1 Encrypted disclosure of protected attributes
In section 3.7, we have presented a problem with the proposed solution for
protected attributes. In the proposal that was discussed, the wallet application
itself (following the user’s decision) is responsible for deciding whether to disclose
an attribute to a requesting party or not. While this approach is feasible when
the user’s wallet is trusted, under certain scenarios, this might not be the case,
especially when we consider protected attributes where the issuer (and not per
se the user) has an interest in protecting the attribute, such as for economic
reasons.

For this scenario, an alternative solution needs to be found. We already dis-
cussed the possibility of certified wallets (in section 3.7), but these require trust-
ing the operating system. Instead, it would be interesting to solve this problem
by altering the (cryptographic) protocols.

The wallet should only be able to disclose an encrypted version of the attribute,
so only authorised verifiers with the proper decryption key will be able to de-
crypt the contents of the attribute. However, instead of doing this in the naive
manner as described in section 1.1.4 on encrypted attributes (where simply the
attribute’s contents are symmetrically encrypted), the wallet itself should be
able to see the contents of the attribute for transparency reasons. Only the sig-
nature on the credential must be encrypted in such a form that only the wallet
itself and authorised requestors can verify it. This could potentially be achieved
with polymorphic encryption of the credentials.

62

7.2 Empirical research to user perception
As discussed in chapter 1, a fundamental problem with over-asking in SSI ecosys-
tems is that users can be unaware or ignorant about their own responsibility
towards the protection of their own data in an SSI wallet. So far, we have
based our research on a lot of assumptions about this topic. However, empir-
ical research on the user perception of using SSI wallets is required to further
substantiate these assumptions. What are the user’s actual expectations about
the SSI platform and wallet, and who do they consider responsible for data
protection? This is essential for a proper design of an SSI system and wallet
application.

Additionally, it is important to know how users experience the user interface
and usability of the wallet, not per se for accessibility purposes, but more so for
awareness of security and privacy. It is interesting to know how users experience
strict or permissive wallet behaviour (and the exact design of the warning or
consent screen), as well as the authentication of requestors and how they judge
the legitimacy and trustworthiness of a requestor in their app. More research
like that of Schraffenberger and Jacobs [3] as well as van Elteren [49] is required.

7.3 Legal data protection responsibilities for SSI
As mentioned in section 1.1.4, it is unclear to what extent issuers of credentials
have a legal responsibility to protect the data contained in these credentials
when they are in SSI wallets. On the one hand, users (data subjects) have a
right to access the data an issuer (data processor or data controller) has about
them. These data processors must even make the data available in a common
format. While doing so, however, they must still properly protect the data.
As an example, hospitals must provide patients with their medical files when
they request them, but they should not provide those files by sending them over
regular email. That would be considered an insecure way of sharing the data
and thus a violation of their duty to protect them.

Similarly, one could argue that issuers might have to seriously assess whether
certain data should be made available as an attribute in an SSI credential at all,
as this makes the data vulnerable. Perhaps certain information is too sensitive
to be issued to a user’s SSI wallet. Both from a legal and ethical perspective, this
topic will need more attention in the upcoming years, in which these questions
will become more actual.

63

References

[1] R. H. Thaler and C. R. Sunstein, Nudge: Improving Decisions About
Health, Wealth, and Happiness. Penguin Books, 2009, isbn: 978-0-1410-
4001-1.

[2] A. Terpstra, P. Graßl, and H. K. Schraffenberger, “Think before you click:
How reflective patterns contribute to privacy,” in CHI Conference on Hu-
man Factors in Computing Systems. What Can CHI Do About Dark Pat-
terns? CHI Workshop, 2020. [Online]. Available: https://hdl.handle.
net/2066/246490.

[3] H. K. Schraffenberger and B. P. Jacobs, “Friction for privacy - why pri-
vacy by design needs user experience design,” European Cyber Security
Perspectives, pp. 12–14, 2020.

[4] D. W. Chadwick, M. Kubach, I. Sette, and I. H. J. Jeyakumar, “Estab-
lishing trust in SSI verifiers,” in Open Identity Summit 2023, Gesellschaft
für Informatik, 2023, pp. 15–26, isbn: 978-3-8857-9729-6. doi: 10.18420/
OID2023_01.

[5] European Commission, Regulation (EU) 2016/679 of the European Par-
liament and of the Council of 27 April 2016 on the protection of natural
persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC (General Data
Protection Regulation) (Text with EEA relevance), 2016. [Online]. Avail-
able: https://eur-lex.europa.eu/eli/reg/2016/679/oj.

[6] M. Eisenlohr, “Constrain the verifier - preventing over-identification in
self-sovereign identity,” M.S. Thesis, Radboud University Nijmegen, 2023.
[Online]. Available: https://github.com/MaJoEi/scriptie- demo/
blob/main/Master_Thesis.pdf.

[7] T. Sharon, M. Stevens, S. Kraaijeveld, and L. Siffels, Sphere transgression
watch. [Online]. Available: https://www.sphere-transgression-watch.
org.

[8] M. Walzer, Spheres of justice: a defense of pluralism and equality. Basic
Books, 1983, isbn: 978-0-4650-8189-9.

[9] Ministerie van Binnenlandse Zaken en Koninkrijksrelaties, Waarden, kansen
en uitdagingen rond het Europese Digitale Identiteit raamwerk, 2022. [On-
line]. Available: https://www.rijksoverheid.nl/documenten/brieven/
2022/07/26/waarden-kansen-en-uitdagingen-rond-het-europese-
digitale-identiteit-raamwerk.

[10] H. Nissenbaum, Privacy in Context Technology, Policy, and the Integrity
of Social Life. Stanford University Press, 2009, isbn: 978-0-8047-5237-4.

64

https://hdl.handle.net/2066/246490
https://hdl.handle.net/2066/246490
https://doi.org/10.18420/OID2023_01
https://doi.org/10.18420/OID2023_01
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://github.com/MaJoEi/scriptie-demo/blob/main/Master_Thesis.pdf
https://github.com/MaJoEi/scriptie-demo/blob/main/Master_Thesis.pdf
https://www.sphere-transgression-watch.org
https://www.sphere-transgression-watch.org
https://www.rijksoverheid.nl/documenten/brieven/2022/07/26/waarden-kansen-en-uitdagingen-rond-het-europese-digitale-identiteit-raamwerk
https://www.rijksoverheid.nl/documenten/brieven/2022/07/26/waarden-kansen-en-uitdagingen-rond-het-europese-digitale-identiteit-raamwerk
https://www.rijksoverheid.nl/documenten/brieven/2022/07/26/waarden-kansen-en-uitdagingen-rond-het-europese-digitale-identiteit-raamwerk

[11] K. Cameron, The laws of identity, Microsoft Corporation, 2005. [Online].
Available: https://www.identityblog.com/stories/2005/05/13/
TheLawsOfIdentity.pdf.

[12] C. Allen. “The path to self-sovereign identity.” (2016), [Online]. Available:
http://www.lifewithalacrity.com/2016/04/the-path-to-self-
soverereign-identity.html.

[13] K. Jordan, J. Hauser, and S. Foster, “The Augmented Social Network:
Building identity and trust into the next-generation internet,” First Mon-
day, vol. 8, 8 2003, issn: 1396-0466. doi: 10.5210/FM.V8I8.1068.

[14] A. Jøsang and S. Pope, “User centric identity management,” AusCERT
Conference, vol. 22, pp. 77–89, 2005.

[15] K. Cameron, R. Posch, and K. Rannenberg, A user-centric identity meta-
system: Proposal for a common identity framework, Microsoft Corpora-
tion, 2008. [Online]. Available: https://www.identityblog.com/wp-
content/images/2009/06/UserCentricIdentityMetasystem.pdf.

[16] D. Loffreto. “What is "Sovereign Source Authority"?” (2012), [Online].
Available: https://www.moxytongue.com/2012/02/what-is-sovereign-
source-authority.html.

[17] D. Loffreto. “Self-sovereign identity.” (2016), [Online]. Available: https:
//www.moxytongue.com/2016/02/self-sovereign-identity.html.

[18] A. Giannopoulou and G. Nl, “Digital identity infrastructures: A critical
approach of self-sovereign identity,” Digital Society, vol. 2, pp. 1–19, 2
2023, issn: 2731-4669. doi: 10.1007/S44206-023-00049-Z.

[19] M. Graglia, C. Mellon, and T. Robustelli, The nail finds a hammer self-
sovereign identity, design principles, and property rights in the devel-
oping world, New America, 2018. [Online]. Available: https : / / www .
newamerica.org/future-land-housing/reports/nail-finds-hammer/.

[20] A. Giannopoulou and F. Wang, “Self-sovereign identity,” Internet Policy
Review, vol. 10, pp. 1–10, 2 2021, issn: 2197-6775. doi: 10.14763/2021.
2.1550.

[21] J. Camenisch and A. Lysyanskaya, “An efficient system for non-transferable
anonymous credentials with optional anonymity revocation,” in Advances
in Cryptology — EUROCRYPT 2001, vol. 2045, Springer Berlin Heidel-
berg, 2001, pp. 93–118, isbn: 978-3-5404-4987-4. doi: 10.1007/3-540-
44987-6_7.

[22] J. Camenisch and E. V. Herreweghen, “Design and implementation of the
idemix anonymous credential system,” in Proceedings of the 9th ACM Con-
ference on Computer and Communications Security, ACM Press, 2002,
pp. 21–30, isbn: 1-58113-612-9. doi: 10.1145/586110.586114.

[23] J. Camenisch, S. Krenn, A. Lehmann, G. L. Mikkelsen, G. Neven, and
M. Ø. Pedersen, “Formal treatment of privacy-enhancing credential sys-
tems,” in Advances in Cryptology – ASIACRYPT 2016, vol. 9566, Springer
Verlag, 2016, pp. 3–24, isbn: 978-3-319-31300-9. doi: 10.1007/978-3-
319-31301-6_1.

[24] D. Chaum, “Security without identification: Transaction systems to make
big brother obsolete,” Communications of the ACM, vol. 28, pp. 1030–
1044, 10 1985, issn: 1557-7317. doi: 10.1145/4372.4373.

[25] D. Chaum and J. H. Evertse, “A secure and privacy-protecting protocol
for transmitting personal information between organizations,” in Advances

65

https://www.identityblog.com/stories/2005/05/13/TheLawsOfIdentity.pdf
https://www.identityblog.com/stories/2005/05/13/TheLawsOfIdentity.pdf
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
https://doi.org/10.5210/FM.V8I8.1068
https://www.identityblog.com/wp-content/images/2009/06/UserCentricIdentityMetasystem.pdf
https://www.identityblog.com/wp-content/images/2009/06/UserCentricIdentityMetasystem.pdf
https://www.moxytongue.com/2012/02/what-is-sovereign-source-authority.html
https://www.moxytongue.com/2012/02/what-is-sovereign-source-authority.html
https://www.moxytongue.com/2016/02/self-sovereign-identity.html
https://www.moxytongue.com/2016/02/self-sovereign-identity.html
https://doi.org/10.1007/S44206-023-00049-Z
https://www.newamerica.org/future-land-housing/reports/nail-finds-hammer/
https://www.newamerica.org/future-land-housing/reports/nail-finds-hammer/
https://doi.org/10.14763/2021.2.1550
https://doi.org/10.14763/2021.2.1550
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1145/586110.586114
https://doi.org/10.1007/978-3-319-31301-6_1
https://doi.org/10.1007/978-3-319-31301-6_1
https://doi.org/10.1145/4372.4373

in Cryptology, vol. 263 LNCS, Springer Verlag, 1987, pp. 118–167, isbn:
978-3-5401-8047-0. doi: 10.1007/3-540-47721-7_10.

[26] K. Rannenberg, J. Camenisch, and A. Sabouri, Attribute-based Credentials
for Trust: Identity in the Information Society. Springer Cham, 2015, pp. 1–
391, isbn: 978-3-3191-4438-2. doi: 10.1007/978-3-319-14439-9.

[27] M. S. Ferdous, F. Chowdhury, and M. O. Alassafi, “In search of self-
sovereign identity leveraging blockchain technology,” IEEE Access, vol. 7,
pp. 103 059–103 079, 2019, issn: 2169-3536. doi: 10.1109/ACCESS.2019.
2931173.

[28] M. A. López, Self-sovereign identity — the future of identity: Self-sovereignity,
digital wallets, and blockchain, Inter-American Development Bank, 2020.
doi: 10.18235/0002635.

[29] N. Naik and P. Jenkins, “Self-sovereign identity specifications: Govern
your identity through your digital wallet using blockchain technology,”
in 2020 8th IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering (MobileCloud), IEEE, 2020, pp. 90–95, isbn:
978-1-7281-1035-6. doi: 10.1109/MobileCloud48802.2020.00021.

[30] N. Naik and P. Jenkins, “Governing principles of self-sovereign identity
applied to blockchain enabled privacy preserving identity management
systems,” in 2020 IEEE International Symposium on Systems Engineering
(ISSE), IEEE, 2020, pp. 1–6, isbn: 978-1-7281-8602-3. doi: 10.1109/
ISSE49799.2020.9272212.

[31] N. Naik and P. Jenkins, “Your identity is yours: Take back control of
your identity using GDPR compatible self-sovereign identity,” in 2020 7th
International Conference on Behavioural and Social Computing (BESC),
IEEE, 2020, pp. 1–6. doi: 10.1109/BESC51023.2020.9348298.

[32] C. Lundkvist, R. Heck, J. Torstensson, Z. Mitton, and M. Sena, uPort:
A platform for self-sovereign identity, uPort, 2017. [Online]. Available:
https://whitepaper.uport.me.

[33] N. Naik and P. Jenkins, “uPort open-source identity management system:
An assessment of self-sovereign identity and user-centric data platform
built on blockchain,” in 2020 IEEE International Symposium on Systems
Engineering (ISSE), IEEE, 2020, pp. 1–7. doi: 10.1109/ISSE49799.
2020.9272223.

[34] A. Tobin and D. Reed, The inevitable rise of self-sovereign identity, Sovrin
Foundation, 2017. [Online]. Available: https://sovrin.org/library/
inevitable-rise-of-self-sovereign-identity/.

[35] C. Pattiyanon and T. Aoki, “Compliance SSI system property set to laws,
regulations, and technical standards,” IEEE Access, vol. 10, pp. 99 370–
99 393, 2022, issn: 2169-3536. doi: 10.1109/ACCESS.2022.3204112.

[36] C. Pattiyanon, “Security weakness and privacy preservation analysis of SSI
management systems using information retrieval and system modeling,”
Ph.D. dissertation, Japan Advanced Institute of Science and Technology,
2023. [Online]. Available: http://hdl.handle.net/10119/18425.

[37] I. Henderson, J. Jeyakumar, D. W. Chadwick, and M. Kubach, “A novel
approach to establish trust in verifiable credential issuers in self-sovereign
identity ecosystems using TRAIN,” in Open Identity Summit 2022, Gesellschaft
für Informatik e.V.., 2022, pp. 27–38, isbn: 978-3-8857-9719-7. doi: 10.
18420/OID2022_02.

66

https://doi.org/10.1007/3-540-47721-7_10
https://doi.org/10.1007/978-3-319-14439-9
https://doi.org/10.1109/ACCESS.2019.2931173
https://doi.org/10.1109/ACCESS.2019.2931173
https://doi.org/10.18235/0002635
https://doi.org/10.1109/MobileCloud48802.2020.00021
https://doi.org/10.1109/ISSE49799.2020.9272212
https://doi.org/10.1109/ISSE49799.2020.9272212
https://doi.org/10.1109/BESC51023.2020.9348298
https://whitepaper.uport.me
https://doi.org/10.1109/ISSE49799.2020.9272223
https://doi.org/10.1109/ISSE49799.2020.9272223
https://sovrin.org/library/inevitable-rise-of-self-sovereign-identity/
https://sovrin.org/library/inevitable-rise-of-self-sovereign-identity/
https://doi.org/10.1109/ACCESS.2022.3204112
http://hdl.handle.net/10119/18425
https://doi.org/10.18420/OID2022_02
https://doi.org/10.18420/OID2022_02

[38] Electronic signatures and infrastructures; trusted lists, ETSI 119 612 v2.2.1,
European Telecommunications Standards Institute, 2016. [Online]. Avail-
able: https://www.etsi.org/deliver/etsi_ts/119600_119699/
119612/02.01.01_60/ts_119612v020101p.pdf.

[39] The common union toolbox for a coordinated approach towards a Eu-
ropean Digital Identity framework - the European Digital Identity Ar-
chitecture and Reference Framework, EUDI ARF v1.0.0, 2023. [Online].
Available: https://digital-strategy.ec.europa.eu/en/library/
european-digital-identity-wallet-architecture-and-reference-
framework.

[40] N. Anciaux, W. Bezza, B. Nguyen, and M. Vazirgiannis, “MinExp-card,”
in Proceedings of the 16th International Conference on Extending Database
Technology, ACM, 2013, pp. 753–756, isbn: 978-1-4503-1597-5. doi: 10.
1145/2452376.2452472.

[41] C. A. Ardagna, S. D. C. di Vimercati, S. Foresti, S. Paraboschi, and P.
Samarati, “Minimising disclosure of client information in credential-based
interactions,” International Journal of Information Privacy, Security and
Integrity, vol. 1, p. 205, 2/3 2012, issn: 1741-8496. doi: 10.1504/IJIPSI.
2012.046133.

[42] Verifiable Credentials Data Model, W3C VC-data-model v1.1, The World
Wide Web Consortium, 2022. [Online]. Available: https://www.w3.org/
TR/vc-data-model.

[43] H. K. Schraffenberger. “Pretty verifier names.” (2021), [Online]. Available:
https://creativecode.github.io/irma-made-easy/posts/pretty-
verifier-names/.

[44] Machine Readable Travel Documents - Part 11: Security Mechanisms for
MRTDs, ICAO Doc 9303-11, International Civil Aviation Organization,
2021. [Online]. Available: https : / / www . icao . int / publications /
documents/9303_p11_cons_en.pdf.

[45] Technical guideline advanced security mechanisms for machine readable
travel documents and eIDAS token, BSI TR-03110, Bundesamt für Sicher-
heit in der Informationstechnik, 2015. [Online]. Available: https://www.
bsi.bund.de/dok/TR-03110-en.

[46] M. Harbach, S. Fahl, M. Rieger, and M. Smith, “On the acceptance of
privacy-preserving authentication technology: The curious case of national
identity cards,” in 2013, pp. 245–264, isbn: 978-3-642-39077-7. doi: 10.
1007/978-3-642-39077-7_13.

[47] F. Baldimtsi, J. Camenisch, M. Dubovitskaya, et al., “Accumulators with
applications to anonymity-preserving revocation,” in 2017 IEEE European
Symposium on Security and Privacy (EuroS&P), IEEE, 2017, pp. 301–315,
isbn: 978-1-5090-5761-0. doi: 10.1109/EuroSP.2017.13.

[48] R. O. Mason, “Four ethical issues of the information age,” MIS Quarterly:
Management Information Systems, vol. 10, pp. 5–12, 1 1986, issn: 0276-
7783. doi: 10.2307/248873.

[49] L. van Elteren, “Boosting with friction - the effects of design friction on
deliberation in the context of privacy decisions,” M.S. Thesis, Radboud
University Nijmegen, 2020. [Online]. Available: https://theses.ubn.
ru.nl/handle/123456789/12735.

67

https://www.etsi.org/deliver/etsi_ts/119600_119699/119612/02.01.01_60/ts_119612v020101p.pdf
https://www.etsi.org/deliver/etsi_ts/119600_119699/119612/02.01.01_60/ts_119612v020101p.pdf
https://digital-strategy.ec.europa.eu/en/library/european-digital-identity-wallet-architecture-and-reference-framework
https://digital-strategy.ec.europa.eu/en/library/european-digital-identity-wallet-architecture-and-reference-framework
https://digital-strategy.ec.europa.eu/en/library/european-digital-identity-wallet-architecture-and-reference-framework
https://doi.org/10.1145/2452376.2452472
https://doi.org/10.1145/2452376.2452472
https://doi.org/10.1504/IJIPSI.2012.046133
https://doi.org/10.1504/IJIPSI.2012.046133
https://www.w3.org/TR/vc-data-model
https://www.w3.org/TR/vc-data-model
https://creativecode.github.io/irma-made-easy/posts/pretty-verifier-names/
https://creativecode.github.io/irma-made-easy/posts/pretty-verifier-names/
https://www.icao.int/publications/documents/9303_p11_cons_en.pdf
https://www.icao.int/publications/documents/9303_p11_cons_en.pdf
https://www.bsi.bund.de/dok/TR-03110-en
https://www.bsi.bund.de/dok/TR-03110-en
https://doi.org/10.1007/978-3-642-39077-7_13
https://doi.org/10.1007/978-3-642-39077-7_13
https://doi.org/10.1109/EuroSP.2017.13
https://doi.org/10.2307/248873
https://theses.ubn.ru.nl/handle/123456789/12735
https://theses.ubn.ru.nl/handle/123456789/12735

	Introduction
	Problem statement
	Trustworthiness of verifiers
	The myth of true self-sovereignty
	Expectations and responsibilities
	Factors contributing to over-asking
	Keeping data in context

	Our contribution

	Related work
	Privacy and identity management
	Identity management towards of SSI
	Refining SSI properties
	Establishing trust in SSI verifiers

	EU Digital Identity
	EUDI Trusted Lists
	eIDAS Trusted Lists

	Decision models for over-asking in SSI
	Verifiable Credentials and Verifiable Presentations
	Verifiable Presentation Requests

	Yivi
	Yivi scheme as trust anchor
	Yivi as SSI system
	Requestor scheme (pretty verifiers)

	Existing authorisation mechanisms for data disclosure
	Germain eIDs

	Protected attributes
	System designs
	Authorisation methods
	Accumulator-based methods
	Privacy-preserving issuer-announced authorisations

	Comparing different system designs
	Modifiability
	Scalability
	Granularity
	Authorisation context
	Transparency
	Overview

	Authoriser candidates
	Issuer as authoriser
	Scheme manager (wallet provider) as authoriser
	Separate authorisation party
	Multiple designs

	Finding a balance between data portability and privacy
	Preventing a closed system
	A new business model: verifier pays
	Permissive or strict wallets
	Grounds for restricting an attribute

	Implementation in the Yivi ecosystem
	Authentication using TLS
	Scheme-based authorisation
	Issuer-announced authorisation

	Certified wallets

	Certified disclosure requests
	Over-asking of non-sensitive attributes
	System designs
	Authorisation procedure
	Classic authorisation procedure
	Public self-registration
	Hybrid approaches

	Implementation in Yivi
	Online portal
	Scalability

	Afterthoughts
	UX aspects of wallet applications
	Permissive wallets and bypassing warnings
	Historic disclosure behaviour
	Displaying sensitive credentials
	Protected attributes without authorisation infrastructure

	Categorisation of credentials
	Federated schemes
	Governance benefits
	Hierarchical scheme signing
	Scheme federation
	Just-In-Time scheme retrieval

	Conclusion
	Future work
	Encrypted disclosure of protected attributes
	Empirical research to user perception
	Legal data protection responsibilities for SSI

	References

